首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Salinity stress is limiting growth and productivity of plants in many areas of the world. Plants adopted different strategies to minimize the effect of salt stress. A pot experiment was conducted to investigate the morphological and physiological changes produced in Canola (Brassica napus) by exogenous application of ellagic acid (EA) under saline conditions. EA is an antioxidant, expected to reduce the effect of salinity stress. The seeds of two canola cultivars, Rainbow and Oscar, were soaked for 6?h with different concentrations of EA (0, 55 and 110?µg/ml). The soaked seeds were sown in small pots. Salt stress was imposed on the plants by applying NaCl solutions of different concentrations (0, 60 and 120?mM) and the duration of stress was for four weeks. Salinity stress reduced seed germination and disturbed the morphological and physiological attributes of B. napus. Application of EA as seed soaking reduced the effect of salinity and enhanced the growth of plants. Overall, we could confirm a significant role of EA by inducing salinity tolerance in B. napus.  相似文献   

2.
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.  相似文献   

3.
《农业工程》2021,41(5):491-498
In this study, the effect of seed priming using ascorbic acid (ASA) on three commercial wheat cultivars i.e., Punjab-2011, Faisalabad-2008, and Ujala-2016 under salinity stress in both homogenous and heterogeneous environments has been investigated. It revealed that different levels of salinity have significantly reduced the growth attributes like percent germination, germination index, radical & plumule length, seed vigor index (In-vitro), seedling length, fresh & dry weight, and total chlorophyll content (In-vivo) with subsequent treatments. Salinity stress was induced by using NaCl in three different concentrations (100, 150, and 200 mM). Seeds of the three cultivars primed with 50, 100, and 150 mg/L ascorbic-acids have not only improved percent germination but also considerably reduced germination time and increased germination index (GI) indicating the potential for tolerating saline conditions. Seedling growth (seedling length, Fresh weight, and dry weight) of seeds primed with 50, 100, and 150 mg/L (ASA) was significantly higher than other non-primed seeds under the prevailing saline conditions. Hormonal priming with different concentrations of ascorbic acid was effective, nevertheless, the best results were obtained with 100 and 150 mg/L (ASA) concentrations. We concluded that the delay in germination and seedling growth was mainly due to excessive Na+ accumulation in the seeds of wheat cultivars. On the other hand, seed priming with various concentrations of ascorbic acid has proved to be effective in inducing salt tolerance in terms of germination parameters, seedling characteristics, and chlorophyll retention in the three local commercial wheat cultivars.  相似文献   

4.
To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.  相似文献   

5.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

6.
Salt tolerance of sorghum varieties in terms of fresh weight, ion accumulations, proline content and peroxidase activity was analyzed in this study. Three sorghum varieties, Payam, Kimia, and Jambo, differing in salt tolerance, were grown in a greenhouse-hydroponic culture with a complete nutrition solution to which 0, 50, 100, 150 and 200 mM NaCl was added. Plant roots and leaves were harvested at 15 and 30 days after treatment and subjected to analysis. Clear decline in K+ and Ca2+ concentrations and increase in Na+ and proline contents were observed in the root and leaf tissues at each NaCl concentration in all varieties during the NaCl treatment. The Ca2+ concentration in leaves was higher than in roots, and had the following order in the tested cultivars: Jambo, Kimia, and Payam. Total peroxidase activity increased under salinity stress and it was proportional with the salt concentration. Payam had the largest decrease (46.95%) in fresh weight caused by NaCl, while Jambo had the lowest decrease, 28.63%. Linear regression analysis revealed significant relationships between the estimated factors and fresh weight. The profiles of isoperoxidases were modified under stress conditions. Two isoforms, A1 and A2, were detected in all three varieties with different intensities. Under NaCl stress, isoperoxidases were strongly expressed and a third isoform, A3, was specifically found in variety Jambo suggesting that A3 is implicated in salt adaptation of this variety.  相似文献   

7.

Soil salinization is a global issue impeding horticulture production and is approaching an alarming status due to climate change and urbanization. Breeding salt-tolerant rootstock varieties is an ideal strategy to mitigate stress due to salinity in mango and other perennial fruit species. Stress combating strategies employed by seedlings of 7 mango were studied under saline conditions (200 mM NaCl, EC: > 4.0 dSm−1, pH 8.5) in pot experiments. Significantly high accumulation of proline (19.07 µg g−1 FW in Bappakai), glycine betaine (55.11 µg g−1 FW in 13–1), and total sugars (17.33 mg g−1 FW in Kurukkan) were found to be the common mechanism employed by the tolerant cultivars to counter the osmotic stress, under suboptimal conditions. Non-enzymatic antioxidants viz., tannins (17.18 mg g−1), phenols (18.68 mg g−1), and anthocyanins (1.59 mg g−1) were increased in seedling of "13–1", the salt-resistant cultivar from Israel. Reactive oxygen species (ROS) regulation by increased activity of superoxide dismutase and catalase in the two polyembryonic cultivars of Indian origin (Kurukkan and Nekkare) suggests their potential use as rootstocks to combat oxidative stress. The tolerance index of various cultivars was calculated by averaging the scores of morphological stress indicators, and its correlation with studied parameters suggests that salinity resilience is more tightly linked to enhanced catalase accumulation (r2 = 0.8361) that is reduced ionic stress. This evidence assign the role of osmotic stress alleviation and redox regulation in salt tolerance mechanism operational in native Indian cultivars, Nekkare and Kurukkan at par with known salt tolerant rootstocks.

  相似文献   

8.
The natural capacity of plants to endure salt stress is largely regulated by multifaceted structural and physio-biochemical modulations. Salt toxicity endurance mechanism of six ecotypes of Typha domingensis Pers. was evaluated by analyzing photosynthesis, ionic homeostasis, and stomatal physiology under different levels of salinity (0, 100, 200 and 300 mM NaCl). Typha populations were collected across different areas of Punjab, an eastern province in Pakistan. All studied attributes among ecotypes presented differential changes as compared to control. Different salt treatments not only affected gas exchange attributes but also shown significant modifications in stomatal anatomical changes. As compared to control, net photosynthetic rate, transpiration rate, total chlorophyll contents and carotenoids were increased by 111%, 64%, 103% and 171% respectively, in Sahianwala ecotype among all other ecotypes. Similarly, maximum water use efficiency (WUE), sub stomatal CO2 concentration, sodium (Na+) and chloride (Cl) contents were observed in Sahianwala (191%, 93%, 168%, 158%) and Knotti (162%, 75%, 146%, 182%) respectively, as compared to the others ecotypes. Adaxial and abaxial stomatal areas remained stable in Sahianwala and Knotti. The highest abaxial stomatal density was observed in Gatwala ecotype (42 mm2) and maximum adaxial stomatal density was recorded in Sahianwala ecotype (43 mm2) at 300 mM NaCl salinity. The current study showed that Typha ecotypes responded varyingly to salinity in terms of photosynthesis attributes to avoid damages due to salinity. Overall, differential photosynthetic activity, WUE, and changes in stomatal attributes of Sahianwala and Knotti ecotypes contributed more prominently in tolerating salinity stress. Therefore, Typha domingensis is a potential species to be used to rehabilitate salt affected lands for agriculture and aquatic habitat.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00963-x.  相似文献   

9.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   

10.
Salt stress perturbs a multitude of physiological processes such as photosynthesis and growth. To understand the biochemical changes associated with physiological and cellular adaptations to salinity, two lettuce varieties (Verte and Romaine) were grown in a hydroponics culture system supplemented with 0, 100 or 200 mM NaCl. Verte displayed better growth under 100 mM NaCl compared to Romaine, but both genotypes registered relatively similar reductions in growth under 200 mM NaCl treatment. Both varieties showed differences in net photosynthetic activity in the absence of salt and 8 days after salt treatment. These differences diminished subsequently under prolonged salt stress (14 days). Verte showed enhanced leaf proline and restricted total cations especially Na+, lesser malondialdehyde (MDA) formation and lignification in the roots under 100 mM NaCl salinity. Membrane damage estimated by electrolyte leakage increased with elevated salt concentrations in roots of both varieties, but Verte had significantly lower electrolyte leakage relative to Romaine under 100 mM NaCl. Moreover, Verte also accumulated greater levels of carotenoids under increasing NaCl concentrations compared to Romaine. Taken together, these findings suggest that the greater tolerance of Verte to 100 mM NaCl is related to the more restricted accumulation of total cations and toxic Na+ in the roots and enhanced levels of antioxidative metabolites in root and leaf tissue.  相似文献   

11.
  • Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated.
  • We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage.
  • Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants.
  • The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
  相似文献   

12.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

13.
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.  相似文献   

14.
Salinization of agricultural land is an increasing problem. Because of their high tolerance to salinity, Salicornia spp. could become models to study salt tolerance; they also represent promising saline crops. The salinity-growth response curve for Salicornia dolichostachya Moss was evaluated at 12 salt concentrations in a hydroponic study in a greenhouse and at 5 different seawater dilutions in an outside setting. Salt concentrations ranged between 0 mM and 500 mM NaCl (≈seawater salinity). Plants were grown for six weeks and morphological and physiological adaptations in different tissues were evaluated.S. dolichostachya had its growth optimum at 300 mM NaCl in the root medium, independent of the basis on which growth was expressed. The relative growth rate (RGR) in the greenhouse experiment was comparable with RGR-values in the outdoor growth experiment. Leaf succulence and stem diameter had the highest values at the growth optimum (300 mM NaCl). Carbon isotope discrimination (δ13C) decreased upon salinity. S. dolichostachya maintained a lower leaf sap osmotic potential relative to the external solution over the entire salinity range, this was mainly accomplished by accumulation of Na+ and Cl. Glycine betaine concentrations did not significantly differ between the treatments. Na+:K+-ratio and K+-selectivity in the shoots increased with increasing salinity, both showed variation between expanding and expanded shoot tissue. We conclude that S. dolichostachya was highly salt tolerant and showed salt requirement for optimal growth. Future growth experiments should be done under standardized conditions and more work at the tissue and cellular level needs to be done to identify the underlying mechanisms of salt tolerance.  相似文献   

15.
A study was conducted to find out the role of ascorbic acid (AsA) in modulating growth and different physio-biochemical attributes of canola plants under well-watered as well as water-deficit conditions. Drought stress imposed on 60 % field capacity significantly decreased the shoot and root fresh and dry weights, leaf chlorophyll contents, shoot and root P, root K+, and activity of CAT enzyme, while increased chlorophyll a/b contents, MDA, NPQ, leaf total phenolics, free proline and GB contents in both canola cultivars. Foliar-applied varying levels (50, 100 and 150 mg L?1) of AsA enhanced shoot and root fresh and root dry weights, qN, NPQ, shoot and root P, AsA as well as the activity of POD enzyme particularly under drought stress conditions. Of both canola cultivars, cv. Dunkeld was higher in shoot fresh weights, ETR and F v /F m, MDA, proline and GB contents, and POD activity, however, cv. Cyclone in total phenolics and qN under well-watered and water-deficit conditions. Overall, the foliar-applied AsA had a positive effect, though not marked, on salt sensitive cv. Cyclone in terms of improved growth and other attributes, whereas exogenously applied AsA had a non-significant effect on relatively salt tolerant cv. Dunkeld.  相似文献   

16.
17.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

18.
Brassica oilseed species now hold the third position among oilseed crops and are an important source of vegetable oil. The most common Brassica oil-seed crops grown for commercial purposes are rape seeds, (Brassica campestris L. and B. napus L.) and mustards (B. juncea (L.) Czern. & Coss. and B. carinata A.Br.). The other Brassica species such as B. nigra (L.) Koch and B. tournefortii Gouan are grown on a very small scale. Brassica napus, B. juncea, and B. carinata are amphidiploids, whereas B. campestris and B. nigra are diploid. Most of the Brassica species have been categorized as moderately salt tolerant, with the amphidiploid species being the relatively salt tolerant in comparison with the diploid species. Due to the higher salt tolerance of the amphidiploids, it has been suggested that their salt tolerance has been acquired from the A (B. campestris) and C (B. oleracea L.) genomes. However, significant inter- and intraspecific variation for salt tolerance exists within brassicas, which can be exploited through selection and breeding for enhancing salt tolerance of the crops. There are contrasting reports regarding the response of these species to salinity at different plant developmental stages, but in most of them it is evident that they maintain their degree of salt tolerance consistently throughout the plant ontogeny. The pattern of uptake and accumulation of toxic ions (Na+ and Cl?), in tissues of plants subjected to saline conditions appears to be mostly due to mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in most of the species, although ion inclusion in some cases at intraspecific levels has also been observed. Maintenance of high tissue K+/Na+ and Ca2 +/Na+ ratios has been suggested as an important selection criterion for salt-tolerance in brassicas. Osmotic adjustment has also been reported in Brassica plants subjected to saline conditions, but particularly to a large extent in salt-tolerant species or cultivars. The roles of important organic osmotica such as total soluble sugars, free amino acids, and free proline, which are central to osmotic adjustment, have been discussed. In canola, B. napus, no positive relationship has been observed between salt tolerance and erucic acid content of seed oil in different cultivars. Furthermore, glucosinolate content of the seed meal in canola generally increases with an increase in salt level of the growth medium. This review highlights the responses of potential Brassica crops to soil salinity from the whole plant to the molecular level. It also describes the efforts made during the past millennium in uncovering the mechanism(s) of salinity tolerance of these crops both at the whole plant and cellular levels. The important selection criteria, which are used by researchers to enhance the degree of salinity tolerance in brassicas, are summarized. In addition, the vital role of genetic engineering and molecular biology approaches to the improvement of salt tolerance in brassicas is emphasized.  相似文献   

19.
Responses of canola (Brassica napus L.) seedlings to three ultraviolet (UV)-B levels [0 (zero), 5 (ambient) and 10 (enhanced) kJ m?2 d?1], two watering regimes (well-watered and water-stressed), and two abscisic acid (ABA) levels (with and without application) were investigated. Overall, enhanced UVB and water stress negatively affected plant growth and physiology, but ABA had very little effect. Enhanced UVB decreased stem height, leaf area, plant dry matter, water use efficiency and wax content, but increased concentrations of chlorophyll a, carotenoids and flavonoids, and ethylene evolution. Water stress reduced stem height and diameter, leaf area, plant dry matter, leaf weight ratio and shoot:root weight ratio under zero and ambient UVB. Water stress also reduced chlorophyll a and carotenoids in plants exposed to enhanced UVB. ABA with watering regime had significant interactive effects only on leaf dry matter and wax content. We found that enhanced UVB and water stress adversely affected B. napus seedlings. Interaction between these two factors affected plant performance. In this interaction, ABA had little significant role. Also, optimum vegetative growth and biomass were achieved under ambient UVB.  相似文献   

20.
The present work addresses the importance of antioxidant, redox and energetic parameters in regulating salt-tolerance in Sesuvium portulacastrum. Experiments were conducted on 45 days old plants subjected to 250 and 1,000 mM NaCl stress for 2–8 days. Plants showed no significant change in growth parameters (shoot length, dry weight, and water content) at 250 mM NaCl as compared to control. However, growth of plants was significantly affected at 1,000 mM NaCl. The differential growth behaviour could be attributed to a greater decline in the energetic parameters (in terms of ratios of NADP/NADPH and ATP/ADP) at 1,000 mM NaCl than at 250 mM NaCl. The osmotic stress imposed to plants at 250 mM NaCl was presumably balanced by the accumulation of sodium ions (Na+), an energetically favorable process, and did not require an increased synthesis of proline. In contrast, to counter osmotic stress at 1,000 mM NaCl, plants accumulated Na+ as well as proline and were, therefore, energetically stressed. Further, the response of enzymatic and molecular antioxidants at 1,000 mM was either close to or even lower than that at 250 mM, which resulted in oxidative damage at 1,000 mM, particularly on longer durations. In conclusion, it is suggested that altered redox and energetic status of the plants could play a key role in mediating the tolerance of Sesuvium under salinity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号