首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Productivity and water use of wheat under free-air CO2 enrichment   总被引:3,自引:0,他引:3  
A free-air CO2 enrichment (FACE) experiment was conducted at Maricopa, Arizona, on wheat from December 1992 through May 1993. The FACE apparatus maintained the CO2 concentration, [CO2], at 550 μmol mol?1 across four replicate 25-m-diameter circular plots under natural conditions in an open field. Four matching Control plots at ambient [CO2] (about 370 μmol mol?1) were also installed in the field. In addition to the two levels of [CO2], there were ample (Wet) and limiting (Dry) levels of water supplied through a subsurface drip irrigation system in a strip, split-plot design. Measurements were made of net radiation, Rn; soil heat flux, Go; soil temperature; foliage or surface temperature; air dry and wet bulb temperatures; and wind speed. Sensible heat flux, H, was calculated from the wind and temperature measurements. Latent heat flux, λET, and evapotranspiration, ET, were determined as the residual in the energy balance. The FACE treatment reduced daily total Rn by an average 4%. Daily FACE sensible heat flux, H, was higher in the FACE plots. Daily latent heat flux, λET, and evapotranspiration, ET, were consistently lower in the FACE plots than in the Control plots for most of the growing season, about 8% on the average. Net canopy photosynthesis was stimulated by an average 19 and 44% in the Wet and Dry plots, respectively, by elevated [CO2] for most of the growing season. No significant acclimation or down regulation was observed. There was little above-ground growth response to elevated [CO2] early in the season when temperatures were cool. Then, as temperatures warmed into spring, the FACE plants grew about 20% more than the Control plants at ambient [CO2], as shown by above-ground biomass accumulation. Root biomass accumulation was also stimulated about 20%. In May the FACE plants matured and senesced about a week earlier than the Controls in the Wet plots. The FACE plants averaged 0.6 °C warmer than the Controls from February through April in the well-watered plots, and we speculate that this temperature rise contributed to the earlier maturity. Because of the acceleration of senescence, there was a shortening of the duration of grain filling, and consequently, there was a narrowing of the final biomass and yield differences. The 20% mid-season growth advantage of FACE shrunk to about an 8% yield advantage in the Wet plots, while the yield differences between FACE and Control remained at about 20% in the Dry plots.  相似文献   

2.
土壤深松和补灌对小麦干物质生产及水分利用率的影响   总被引:7,自引:0,他引:7  
研究一次深松耕作后土壤水分对冬小麦籽粒产量和水分利用率的影响,为小麦节水高产栽培提供理论依据.于2008-2009和2009-2010两个小麦生长季,选用高产小麦品种济麦22,采取测墒补灌的方法,研究了深松+旋耕和旋耕2种耕作方式下土壤水分对小麦0-200 cm土层土壤含水量、干物质积累与分配、籽粒产量及水分利用率的影响.结果表明,(1)深松+旋耕40-180 cm土层土壤含水量低于旋耕处理;旗叶光合速率和水分利用率,开花后干物质积累量及其对籽粒的贡献率显著高于旋耕处理.(2)W3(补灌至0-140 cm土层土壤相对含水量播种期为85%,越冬期80%,拔节和开花期75%)成熟期0-200cm土层土壤含水量与W1(播种期80%,越冬期80%,拔节和开花期75%)和W2处理(播种期80%,越冬期85%,拔节和开花期75%)无显著差异;W3和W'3(播种期85%,越冬期85%,拔节和开花期75%)60-140 cm土层土壤含水量分别低于W4(播种期85%,越冬期85%,拔节和开花期75%)和W'4(播种期90%,越冬期85%,拔节和开花期75%)处理;W3和W'3灌浆中后期旗叶光合速率较高,开花后干物质积累量及其对籽粒的贡献率显著高于其他处理,获得高的籽粒产量和水分利用率.综合考虑籽粒产量、水分利用率和灌溉效益,在深松+旋耕条件下,两年度分别以W3和W'3为节水高产的最佳处理.  相似文献   

3.
Summary Peanut (Arachis hypogaea L., Var. TMV-2) plants were raised in sand cultures under natural photoperiod. Salt treatment (0.4% NaCl on dry weight basis) was given 10 days after sowing. Nutrient solution was supplied 15 days after sowing to control and salinized plants. Phosphate (0.1% NaH2PO4 with 0.01% Tween-80) was sprayed to the plants to the drip point once daily from 20th to 25th day and from 30th to 35th day. The plants were harvested at 30th and 40th day for analysis. The plants grown under saline conditions showed a market reduction in growth. When phosphorus was supplied to saline plants by foliar application, there was an increase in dry weight, leaf area, stomatal frequency, and yield and the increase was more marked when the plants received phosphate for two periods. Phosphorus content decreased due to salinity which was restored by foliar spray of phosphate. With salinity, sodium accumulated while potassium and calcium were lowered. Phosphate spray decreased sodium and increased potassium and calcium in general.  相似文献   

4.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

5.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

6.
The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free‐Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi‐arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha?1 and 1600 to 3900 kg ha?1, respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol?1 CO2) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM‐Wheat, APSIM‐Nwheat, CAT‐Wheat, CROPSYST, OLEARY‐CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature is required to resolve these model discrepancies.  相似文献   

7.
Drought stress destructively affects the growth and productivity of sorghum crop, especially under saline soils. Therefore, Field trials were performed to determine the influence of water stress on water productivity (water productivity for grain, (G-WP) and water productivity for forage, (F-WP), yield of sorghum and soil properties in salt-affected soil (8.20 dS m?1) under different sowing dates and irrigation regimes. The summer sowing (SS) was performed on 1 April while fall sowing (FS) was established on 2 August. The irrigation regimes were; 100, 90, 80, and 70% of crop evapotranspiration (ETc). The findings displayed that the fodder and grain yields were increased by 23% and 26% under SS compared to FS over the two seasons 2017 and 2018, respectively. Among irrigation levels, the maximum values of grain and fodder yield were given by 100% of ETc, while a non-significant difference was observed between 100% and 90% of ETc. Moreover, the maximum values of G-WP (1.31%) and F-WP (9.00%) were recorded for 90% of ETc. Interestingly, the soil salinity was decreased in 0–0.6 m depth, and more decline was noted in 0–0.2 m depth using 90% of ETc. The highest salt accumulation withinside the soil profile was recorded under 70% of ETc in comparison to 100% of ETc. Thereupon, under water scarcity, application of 90% of ETc is recommended with SS to save 10% of the applied irrigation water without a significant decrease in grain yield (GY).  相似文献   

8.
A field-based pot experiment with maize plants was conducted to examine the effect of combined fulvic acid (FA) and super-absorbent polymer (SAP) on leaf gas exchange, water use efficiency, and grain yield under soil water deficit. SAP (45 kg hm?2) was applied to the topsoil at sowing. Plants were well-watered (80% field capacity), but subjected to water deficit (50% field capacity) from tassel stage to grain-fill. FA solution (2 g L?1) was sprayed onto plant leaves at 2 and 9 days after imposing water deficit. Under water deficit, SAP and FA application did not affect evapotranspiration, but increased leaf abscisic acid and decreased leaf transpiration rate with a little change in photosynthesis, thus improving instantaneous water use efficiency. Applying SAP and FA under water deficit also increased grain yield by 19% and grain water use efficiency by 24%, largely attributed to an increase in kernel number. In contrast, under well-watered condition the two chemicals increased stomatal conductance, leaf transpiration, photosynthesis and chlorophyll content, but did not change kernel number and were relatively less effective in respect to water use efficiency compared to water-stressed condition. This study showed that application of foliar FA and soil SAP had little effect on evapotranspiration but maintained high photosynthesis and kernel number, and improved water use efficiency under soil water deficit.  相似文献   

9.
Spring wheat (Triticum aestivum L. cv. Dragon) was exposed to elevated carbon dioxide (CO2), alone (1995) or in combination with two levels of increased ozone (O3) (1994) or increased irrigation (1996) during three successive growing seasons as part of the EU ESPACE‐wheat programme and conducted in open‐top chambers (OTCs) and ambient air (AA) plots at Östad, 50 km north‐east of Göteborg, Sweden. Doubling the CO2 concentration had a positive effect on grain yield in all 3 years (+21, +7 and +11%, respectively), although only statistically significant in 1994. That year was characterised by a warm and dry summer in comparison with 1995 and 1996, in which the summers were more humid and typical for south‐west Sweden. In 1994, the CO2‐induced increase in grain yield was associated with an increase in the duration of the green leaf area, a positive effect on straw yield and on the number of ears per square metre and a negative effect (?13%) on grain protein concentration. Harvest index was unaffected by the elevated CO2 concentration. The only statistically significant effect of elevated CO2 in 1995 was a decrease in the grain protein concentration (?11% in both CO2 concentrations), and in 1996 an increase (+21%) in the straw yield. In 1996 the soil water potential was less negative in elevated CO2, which is likely to reflect a lower water consumption of these plants. Addition of extra O3 significantly affected the grain yield (?6 and ?10%, respectively) and the 1 000‐grain weight negatively (?3 and ?6%). Statistically significant interactions between CO2 and O3 were obtained for the number of ears per unit area and for the 1 000‐grain weight. The 1 000‐grain weight was negatively affected by O3 in low CO2, but remained unaffected in the high CO2 treatment. There was a significant decrease (?6%) in the grain protein concentration induced by elevated irrigation. The chambers, compared with AA plots, had a positive effect on plant development and on grain yield in all 3 years.  相似文献   

10.
Maize being sub-tropical crop is sensitive to water deficit during the early growth stages; particularly clay-rich soil, due to the compaction of the soil. It is well-documented that potential sub-surface drip irrigation (SDI) (Full irrigation; SDIFull (100% field capacity (FC)), Deficit irrigation; SDIDeficit (70% FC)) improves water use efficiency, which leads to increased crop productivity; since it has a constraint that SDI excludes soil air around the root-zone during irrigation events, which alter the root function and crop performance. Additionally, in clayrich soils, the root system of plants generally suffers the limitation of oxygen, particularly the temporal hypoxia, and occasionally from root anoxia; while SDI system accomplishes with the aerating stream of irrigation in the rhizosphere could provide oxygen root environment. The oxygen can be introduced into the irrigation stream of SDI through two ways: the venturi principle, or by using solutions of hydrogen peroxide through the air injection system. Therefore, the application of hydrogen peroxide (H2O2; HP) can mitigate the adverse effect of soil compactness and also lead to improving the growth, yield and yield attributes of maize in clay-rich soil. Considering the burning issue, a field study was conducted in consecutive two seasons of 2017 and 2018; where hybrid maize was cultivated as a second crop, to evaluate the effect of liquid-injection of H2O2 (HP) into the irrigation stream of SDI on the performance of maize in a clay-rich soil field of Adana, Turkey. When soil water content decreased in 50% of available water, irrigation was performed. The amount of water applied to reach the soil water content to the field capacity is SDIFull (100% FC) and 70% FC of this water is SDIDeficit (70% FC). In the irrigation program, hydrogen peroxide (HP) was applied at intervals of 7 days on average according to available water with and without HP: SDIFull (100% FC) + 0 ppm HP with full SDI irrigation; SDIFull (100% FC) + 250 ppm HP with deficit SDI irrigation; SDIDeficit (70% FC) + 0 ppm HP, SDIDeficit (70% FC) + 250 ppm HP and SDIDeficit (70% FC) + 500 ppm HP. Deficit irrigation (SDIDeficit (70% FC)) program was started from tasseling stage and continued up to the physiological maturity stage with sub-soil drip irrigation. H2O2 was applied 3 times during the growing season. Two years’ results revealed that the liquid-injection of H2O2 into the irrigation stream of SDI improved the growth and yield-related attributes and grain yield of maize. Based on the obtained results, during the extreme climatic condition in the year 2017, SDIFull (100% FC) + 250 ppm HP was more effective than SDIFull (100% FC) + 0 ppm HP on all traits for relative to full irrigation. While, during the favourable climatic condition in the 2018 season, SDIFull (100% FC) + 250 ppm HP was more effective than full irrigation with SDIFull (100% FC) + 0 ppm HP for the grain yield, grains, and SPAD value. Accordingly, the most effective treatment was SDIFull (100% FC) + 250 ppm HP, as it gave the highest growth and yield-related attributes and grain yield of maize followed by SDIDeficit (70% FC) + 250 ppm HP. Therefore, SDIFull with 250 ppm H2O2 using as liquid-injection may be recommended to mitigate the adverse effect of soil compactness particularly water-deficit stress in clay-rich soil for the sustainability of maize production.  相似文献   

11.
Four field trials were done with narrow-leafed lupins (Lupinus angustifolius) in 1988 - 1989, to examine the effect of sowing seed with 5% and 0.5% cucumber mosaic virus (CMV) infection on subsequent virus spread, grain yield and percentage of infection in harvested seed. A proportion of the CM V-infected seed failed to produce established plants and thus, plots sown with 5% and 0.5% infected seed contained 1.5-2.9% and 0.2-0.3% of seed-infected plants respectively. The rate of virus spread by aphids was faster and resulted in more extensive infection at maturity in plots sown with 5% infected seed than with 0.5% infected seed. In three trials, sowing 5% infected seed resulted in yield losses of 34 - 53% and CMV infection in the seed harvested of 6 - 13%. The spread of CMV infection resulting from sowing 0.5% infected seed did not significantly decrease yield. However, late CMV spread in these plots caused > 1% seed infection. In the fourth trial, which was badly affected by drought, CMV spread only slowly, there was no significant effect of CMV on grain yield and the percentage of infected seed harvested was 3–5 times less than that in the seed sown. When CMV-infected seed was sown at different depths, target depths of 8 and 11 cm decreased the incidence of seed-infected plants by c. 15% and c. 50% respectively compared with sowing at 5 cm. However, in glasshouse tests, treatment with the pre-emergence herbicide simazine failed to selectively cull out seed-infected plants. The field trials were colonised by green peach (Myzus persicae), blue-green (Acyrthosiphon kondoi) and cowpea (Aphis craccivora) aphids. When the abilities of these aphid species and of the turnip aphid (Lipaphis erysimi) in transmitting CMV from lupins to lupins were examined in glasshouse tests, short acquisition access times favoured transmission. With 5–10 min acquisition access times, overall transmission efficiencies were 10.8%, 9.4%, 6.1% and 3.9% for the green peach, cowpea, blue-green and turnip aphids respectively.  相似文献   

12.
The lack of good irrigation practices and policy reforms in Pakistan triggers major threats to the water and food security of the country. In the future, irrigation will happen under the scarcity of water, as inadequate irrigation water becomes the requirement rather than the exception. The precise application of water with irrigation management is therefore needed. This research evaluated the wheat grain yield and water use efficiency (WUE) under limited irrigation practices in arid and semi-arid regions of Pakistan. DSSAT was used to simulate yield and assess alternative irrigation scheduling based on different levels of irrigation starting from the actual irrigation level up to 65% less irrigation. The findings demonstrated that different levels of irrigation had substantial effects on wheat grain yield and total water consumption. After comparing the different irrigation levels, the high amount of actual irrigation level in semi-arid sites decreased the WUE and wheat grain yield. However, the arid site (Site-1) showed the highest wheat grain yield 2394 kg ha?1 and WUE 5.9 kg?3 on actual irrigation (T1), and with the reduction of water, wheat grain yield decreased continuously. The optimal irrigation level was attained on semi-arid (site-2) with 50% (T11) less water where the wheat grain yield and WUE were 1925 kg ha?1 and 4.47 kg?3 respectively. The best irrigation level was acquired with 40% less water (T9) on semi-arid (site-3), where wheat grain yield and WUE were 1925 kg ha?1 and 4.57 kg?3, respectively. The results demonstrated that reducing the irrigation levels could promote the growth of wheat, resulting in an improved WUE. In crux, significant potential for further improving the efficiency of agricultural water usage in the region relies on effective soil moisture management and efficient use of water.  相似文献   

13.
Chickpea (Cicer arietinum L. cv. 235) plants were grown in sand culture at moisture equal to 45–50% of sand saturation capacity under greenhouse conditions. 60 d after sowing, pots were divided into four lots, leaving one as control and sand moisture content of others was brought to 25–30% (S1), 12–15% (S2) and 5–6% (S3) of sand saturation capacity, by withholding the water supply and then maintaining the required levels gravimetrically till the harvest. Relative water content of leaves and nodule water content were measured as indices of water stress. With increase in the severity and duration of water stress nitrogenase activity and nitrogen and leghemoglobin content of the nodules decreased and the ratio of leghemoglobin components I and II were changed. Nodules developed under limited water availability showed decreased branching, breakdown of the endodermis, greater compactness and decreased vacuolation of cells in the central symbiotic tissue as compared to the control.  相似文献   

14.
水肥一体化条件下设施菜地的N2O排放   总被引:5,自引:0,他引:5  
王艳丽  李虎  孙媛  王立刚 《生态学报》2016,36(7):2005-2014
在保证作物产量的前提下,研究减少农田土壤N_2O排放的水肥统筹管理措施对全球温室气体减排具有重要意义。以京郊典型设施菜地为例,设置了农民习惯(FP)、水肥一体化(FPD)、优化水肥一体化(OPTD)和对照(CK)4个处理,采用静态箱-气相色谱法,对果菜-叶菜(黄瓜-芹菜)轮作周期内土壤N_2O排放进行了观测,并分析了氮肥施用量、灌溉方式、土壤温度和湿度等因素对土壤N_2O排放的影响。结果表明:在黄瓜-芹菜种植模式中,各施氮处理除基肥施用后N_2O排放峰持续10—15d外,一般施肥、施肥+灌溉事件后土壤N_2O排放峰均呈现3—5d短而急促的情形。黄瓜生长季N_2O排放通量与土壤湿度(WFPS)之间呈现显著相关的关系;芹菜生长季N_2O排放通量与土壤温度之间呈现显著相关的关系。观测期内FP处理N_2O排放量为(31.00±2.15)kg N/hm~2,FPD处理与之相比N_2O排放量减少了4.2%,而OPTD处理在减少40%化肥氮量的情况下,N_2O累积排放量比FP处理减少了42.7%,且达到显著水平。说明在水肥一体化条件下,合理改变施肥体系是减少N_2O排放的前提,在此基础上进行水肥优化是设施菜地保持产量、减少N_2O排放的重要技术措施。  相似文献   

15.
Cluster bean (Cyamopsis tetragonoloba L.) yield has plateaued due to reduction in rainfall and rise in temperature. Therefore, its production cycle could not get appropriate water and temperature. It becomes important to standardize the sowing time and plant spacing of cluster beans in changing climate scenarios to get higher productivity. Therefore, a field study was conducted in 2019 at the Research area of MNS-University of Agriculture, Multan, Pakistan to evaluate the effect of four sowing times (15th May, 1st June, 15th June, and 1st July) and three plant spacings (10, 12 and 15 cm) on crop growth, yield, and physiological functions of cluster bean genotype BR-2017 under split plot arrangement under randomized complete block design (RCBD) with three replications. The sowing times (15th May, 1st June, 15th June, and 1st July) were placed in the main plot, while plant spacing (10, 12 and 15 cm) was maintained in subplots. The significant effect of sowing time and plant spacing was observed on pod plant−1, pod length, grain yield, and 1000-grain weight. Results showed that 1st June sowing performed better over 15th May, 15th June, and 1st July, while plant spacing 15 cm about in all sowing times showed higher results on growth and yield parameters of cluster bean over plant spacing 10, 12, and 15 cm. The 1st June sowing time at 15 cm plant spacing showed 8.0, 22.7, and 28.5% higher grains pod-1 than 15th May, 15th June, and 1st July sowing, respectively. Maximum grain yield was observed on 1st June in all three spacings (10, 12, and 15 cm). The chord diagram indicates that the crop has received optimum environmental conditions when sown 1st June over other sowing times. In conclusion, 1st June sowing with 15 cm plant spacing could be a good option to achieve maximum productivity of cluster bean under changing climate scenario.  相似文献   

16.
等氮滴灌对宿根蔗产量及土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
为得到合理的水肥管理措施,研究等氮量下不同滴灌施肥比例对宿根蔗产量以及不同生育期蔗田土壤氧化亚氮(N2 O)通量和无机氮含量的影响,并分析蔗田土壤N2 O通量与无机氮含量之间的关系.该文以自然降雨W0为对照,设置2种滴灌灌水量水平W1(田间持水量的75%)和W2(田间持水量的85%),等量氮肥(N 300 kg·hm-...  相似文献   

17.
Zhang  Heping  Oweis  Theib Y.  Garabet  Sonia  Pala  Mustafa 《Plant and Soil》1998,201(2):295-305
Growth and water use were measured in wheat (Triticum aestivum L.) grown in northern Syria in a typical Mediterranean climate over five seasons 1991/92–1995/96. Water use was partitioned into transpiration (T) and soil evaporation (Es) using Ritchie's model, and water-use efficiency (WUE) and transpiration efficiency (TE) were calculated. The aim of the study was to examine the influence of irrigation and nitrogen on water use, WUE and TE. By addition of 100 kg N ha-1, Es was reduced from 120 mm to 101 mm under rain-fed conditions and from 143 mm to 110 mm under irrigated conditions, and T was increased from 153 mm to 193 mm under rain-fed conditions and from 215 mm to 310 mm under irrigated conditions. Under rain-fed conditions, about 35% of evapotranspiration (ET) may be lost from the soil surface for the fertilized crops and 44% of ET for the unfertilized crops. Transpiration accounted for 65% of ET for the fertilized crops and 56% for the unfertilized crops under rain-fed. As a result of this, WUE was increased by 44% for dry matter and 29% for grain yield under rain-fed conditions, and by 60% for dry matter and 57% for grain yield under irrigated conditions. Transpiration efficiency for the fertilized crops was 43.8 kg ha-1 mm-1 for dry matter and 15 kg ha-1 mm-1 for grain yield, while TE for the unfertilized crops was 33.6 kg ha-1 mm-1 and 12.2 kg ha-1 mm-1 for dry matter and grain yield, respectively. Supplemental irrigation significantly increased post-anthesis water use, transpiration, dry matter and grain yield. Water-use efficiency for grain yield was increased from 9.7 to 11.0 kg ha-1 mm-1 by supplemental irrigation, although WUE for dry matter was not affected by it. Irrigation did not affect transpiration efficiency for grain yield, but decreased transpiration efficiency for dry matter by 16%. This was associated with higher harvest index as a result of good water supply in the post-anthesis period and increased transpiration under irrigated conditions.  相似文献   

18.
Mature apricot (Prunus armeniaca L. cv. Búlida) trees, growing under field conditions, were submitted to two drip irrigation treatments: a control (T1), irrigated to 100 % of seasonal crop evapotranspiration (ETc), and a continuous deficit (T2), irrigated to 50 % of the control throughout the year. The behaviour of leaf water potential and its components, leaf conductance and net photosynthesis were studied at three different times during the growing season, when they revealed a diurnal and seasonal pattern in response to water stress, evaporative demand of the atmosphere and leaf age. The deficit-irrigated trees showed, among other effects, a pronounced decrease in leaf water potential (ψw), decreased in leaf conductance (gs) and no osmotic adjustment. For this reason, gl and ψw can be considered good indicators of mature apricot tree water status and can therefore be used for irrigation scheduling.  相似文献   

19.
The aftereffects of the Russian wheat aphid (RWA) Diuraphis noxia on sowing and productive qualities of barley and spring bread wheat grain were assessed. Seeds of 4 cultivars of barley (Volgar, Povolzhsky 65, Kazak, and Povolzhsky 16) and 4 cultivars of spring wheat (Kinelskaya 59, Kinelskaya Otrada, Kinelskaya Niva, and Kinelskaya 2010) from spikes infested and uninfested with RWA in 2007 and in 2014 were sown in the subsequent years, using 0.5 m2 experimental plots in four replications, at a seeding rate of 300 grains/m2. The least significant difference (LSD0.5) was used to compare the mean ± standard deviation (SD) values. The field germination rate of seeds from spring wheat spikes damaged by RWA was reduced by 15%. Of the components of grain yield, barley and spring wheat grown from seeds from the infested spikes showed a 23-31% smaller number of productive tillers before harvesting, a 16% smaller number of grains per spike, a 13-16% lower grain weight per spike, and a total yield loss of 33-42%. In hulless bread wheat RWA fed on the developing kernels inflicting greater damage, whereas the hulled barley seeds were practically not damaged. The mean yield loss of the barley and spring wheat spikes infested with RWA was 24-32% and 50-66%, respectively. Due to the greater tillering capacity and formation of secondary productive tillers in barley, about 52% of the productive barley tillers and 37-39% of spring wheat ones were infested with RWA, which resulted in a comparable yield loss (20-25% in barley and 19-23% in spring wheat). Resistance to RWA was higher in spring wheat and barley cultivars with a shorter vegetation period, looser spikes, and thinner culm walls. The length of productive tillers damaged by RWA was reduced by 21-28%, which determined a lower incidence of leaf diseases.  相似文献   

20.
15N labelled (NH4)2SO4 was applied to barley at 5 g N m−2 (50 kg N ha−1) in microplots at sowing to study the timing of the N losses and the contribution of soil and fertilizer N to the plant. Water treatments included rainfed and irrigation at 45–50 mm deficit beginning in the spring. Recovery of15N in the plant increased to a maximum of about 20% within 91 days after sowing (DAS 91) and then remained constant. Approximately 16% (0.8 g N m−2) of the fertilizer was in the stem and leaves at DAS 91 and this N was subsequently redistributed to the head. At maturity, approximately 75% of the15N assimilated by the tops was recovered in the grain. Soil N contributed 3.6 g N m−2 to the head; 2.2 g N m−2 was remobilized from the stem and leaves, and the balance, approximately 1.4 g N m−2, was taken up from the soil between DAS 69 to 91. Effects of irrigation treatments on N accumulation were not significant. Residual15N fertilizer in the soil decreased with time from sowing, and at maturity 40% of the applied N was recovered in the surface 0.15 m.15N movement to depth was limited and less than 5% of the fertilizer was recovered below 0.15 m. Irrigation had no effect on the15N recovery at depth. Total recovery of the15N varied between 60 and 67% and implies that 33–40% was lost from the soil-plant system. The total recovery in the soil and plant was not affected by time or irrigation in the interval DAS 39 to 134. Losses occurred before DAS 39 when crop uptake of N was small and soil mineral N content was high. There was an apparent loss of 1.9 g fertilizer N m−2 (i.e. 38% of that applied) between DAS 1 and 15. This loss occurred before crop emergence when rainfall provided conditions suitable for denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号