首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We investigated the prevalence of Legionella species isolated from puddles on asphalt roads. In addition, we carried out sequence-based typing (SBT) analysis on the genetic relationship between L. pneumophila serogroup 1 (SG 1) isolates from puddles and from stock strains previously obtained from sputum specimens and public baths. Sixty-nine water samples were collected from puddles on roads at 6 fixed locations. Legionella species were detected in 33 samples (47.8%) regardless of season. Among the 325 isolates from puddles, strains of L. pneumophila SG 1, a major causative agent of Legionnaires'' disease, were the most frequently isolated (n = 62, 19.1%). Sixty-two isolates of L. pneumophila SG 1 from puddles were classified into 36 sequence types (STs) by SBT. ST120 and ST48 were identified as major STs. Environmental ST120 strains from puddles were found for the first time in this study. Among the 14 STs of the clinical isolates (n = 19), 4 STs (n = 6, 31.6%), including ST120, were also detected in isolates from puddles on roads, and the sources of infection in these cases remained unclear. The lag-1 gene, a tentative marker for clinical isolates, was prevalent in puddle isolates (61.3%). Our findings suggest that puddles on asphalt roads serve as potential reservoirs for L. pneumophila in the environment.  相似文献   

2.
During the summer of 2012, a major Legionella pneumophila serogroup 1 outbreak occurred in Quebec City, Canada, which caused 182 declared cases of Legionnaire''s disease and included 13 fatalities. Legionella pneumophila serogroup 1 isolates from 23 patients as well as from 32 cooling towers located in the vicinity of the outbreak were recovered for analysis. In addition, 6 isolates from the 1996 Quebec City outbreak and 4 isolates from patients unrelated to both outbreaks were added to allow comparison. We characterized the isolates using pulsed-field gel electrophoresis, sequence-based typing, and whole genome sequencing. The comparison of patients-isolated strains to cooling tower isolates allowed the identification of the tower that was the source of the outbreak. Legionella pneumophila strain Quebec 2012 was identified as a ST-62 by sequence-based typing methodology. Two new Legionellaceae plasmids were found only in the epidemic strain. The LVH type IV secretion system was found in the 2012 outbreak isolates but not in the ones from the 1996 outbreak and only in half of the contemporary human isolates. The epidemic strains replicated more efficiently and were more cytotoxic to human macrophages than the environmental strains tested. At least four Icm/Dot effectors in the epidemic strains were absent in the environmental strains suggesting that some effectors could impact the intracellular replication in human macrophages. Sequence-based typing and pulsed-field gel electrophoresis combined with whole genome sequencing allowed the identification and the analysis of the causative strain including its likely environmental source.  相似文献   

3.
Legionella pneumophila serogroup (SG) 1 is the most frequent cause of legionellosis. This study analyzed environmental isolates of L. pneumophila SG 1 in Japan using monoclonal antibody (MAb) typing and sequence-based typing (SBT). Samples were analyzed from bathwater (BW; n = 50), cooling tower water (CT; n = 50), and soil (SO; n = 35). The distribution of MAb types varied by source, with the most prevalent types being Bellingham (42%), Oxford (72%), and OLDA (51%) in BW, CT, and SO, respectively. The ratios of MAb 3/1 positive isolates were 26, 2, and 14% from BW, CT, and SO, respectively. The environmental isolates from BW, CT, and SO were divided into 34 sequence types (STs; index of discrimination [IOD] = 0.973), 8 STs (IOD = 0.448), and 11 STs (IOD = 0.879), respectively. Genetic variation among CT isolates was smaller than seen in BW and SO. ST1 accounted for 74% of the CT isolates. The only common STs between (i) BW and CT, (ii) BW and SO, and (iii) CT and SO were ST1, ST129, and ST48, respectively, suggesting that each environment constitutes an independent habitat.  相似文献   

4.
Legionella is ubiquitous in many environments. At least 50 species and 70 serogroups of the Gram-negative bacterium have been identified. Of the 50 species, 20 are pathogenic, and Legionella pneumophila is responsible for the great majority (approximately 90%) of the Legionnaires'' disease cases that occur. Furthermore, of the 15 L. pneumophila serogroups identified, O1 alone causes more than 84% of the Legionnaires'' disease cases that occur worldwide. Rapid and reliable assays for the detection and identification of L. pneumophila in water, environmental, and clinical samples are in great demand. L. pneumophila bacteria are traditionally identified by their O antigens by immunological methods. We have recently developed an O serogroup-specific DNA microarray for the detection of all 15 distinct O-antigen forms of L. pneumophila, including serogroups O1 to O15. A total of 35 strains were used to verify the specificity of the microarray, including 15 L. pneumophila O-antigen standard reference strains and seven L. pneumophila clinical isolates as target strains, seven reference strains of other non-pneumophila Legionella species as closely related strains, and six non-Legionella bacterial species as nonrelated strains. The detection sensitivity was 1 ng of genomic DNA or 0.4 CFU/ml in water samples with filter enrichment and plate culturing. This study demonstrated that the microarray allows specific, sensitive, and reproducible detection of L. pneumophila serogroups. To the best of our knowledge, this is the first report of a microarray serotyping method for all 15 distinct O-antigen forms of L. pneumophila.  相似文献   

5.

Background

Leptospirosis is one of the most important neglected tropical infectious diseases worldwide. Icterohaemorrhagiae has been throughout recent history, and still is, the predominant serogroup of this pathogen in China. However, very little in detail is known about the serovars or genotypes of this serogroup.

Methodology/Principal Findings

In this study, 120 epidemic strains from five geographically diverse regions in China collected over a 50 year period (1958~2008), and 8 international reference strains characterized by 16S rRNA sequencing and MLST analysis. 115, 11 and 2 strains were identified as L. interrogans, L. borgpetersenii, and L. kirschneri, respectively. 17 different STs were identified including 69 ST1 strains, 18 ST17, 18 ST128, 9 ST143 and 2 ST209. The remaining 12 strains belonged to 12 different STs. eBURST analysis demonstrated that, among the clonal complexes isolated (CCs), CC1 accounted for 73.3% (88/120) strains representing three STs: ST1, ST128 and ST98. ST1 was the most likely ancestral strain of this CC, followed by singleton CC17 (17/120) and CC143 (11/120). Further analysis of adding 116 serogroup Icterohaemorrhagiae strains in the MLST database and studies previously described using global eBURST analysis and MST dendrogram revealed relatively similar ST clustering patterns with five main CCs and 8 singletons among these 244 strains. CC17 was found to be the most prevalent clone of pathogenic Leptospira circulating worldwide. This is the first time, to our knowledge, that ST1 and ST17 strains were distributed among 4 distinct serovars, indicating a highly complicated relationship between serovars and STs.

Conclusions/Significance

Our studies demonstrated a high level of genetic diversity in the serogroup Icterohaemorrhagiae strains. Distinct from ST17 or ST37 circulating elsewhere, ST1 included in CC1, has over the past 50 years or so, proven to be the most prevalent ST of pathogenic leptospires isolated in China. Moreover, the complicated relationship between STs and serovars indicates an urgent need to develop an improved scheme for Leptospira serotyping.  相似文献   

6.
A total of 560 Legionella species were isolated from environmental water sources from public facilities from June to September 2008 throughout South Korea. The distribution of Legionella isolates was investigated according to geographical region, facility type, and sample type. The genetic diversity of 104 isolates of Legionella pneumophila serogroup 1 (sg 1) was analyzed by sequence-based typing (SBT). L. pneumophila was distributed broadly throughout Korea, accounting for 85.0% of the isolates, and L. pneumophila sg 1 predominated in all of the public facilities except for the springs. Legionella anisa and Legionella bozemanii predominated among non-L. pneumophila species (48.1% and 21.0%, respectively). The second most dominant strain differed depending on the facility type: L. anisa was the second most dominant strain in the buildings (10.8%), L. pneumophila sg 5 in public baths (21.6%), L. pneumophila sg 6 in factories (12.0%), and L. pneumophila sg 7 in hospitals (13.1%). In the SBT analysis, 104 L. pneumophila sg 1 isolates were differentiated into 26 sequence types (STs) and categorized into 3 clonal groups (CGs) and 10 singleton STs via the eBURST V3 program. ST1, a potential founder of major CG1, was commonly distributed (48.1%). The dominant ST in hot water was ST-K1 (7, 12, 17, 3, 35, 11, 11), which was designated in this study (36.1%). The second most dominant strain differed depending on the type of facility from which the samples were obtained. The unique allelic profile of ST-K1, obtained from hot water, was not found in the European Working Group for Legionella Infections (EWGLI) SBT database.Legionella species, ubiquitous Gram-negative bacteria, are found in a variety of artificial water systems, natural freshwaters, and soils. Currently, the Legionella genus includes 52 species and more than 70 different serogroups, and more than 20 species have been proven to be causative agents of Legionnaires'' disease (LD). The species Legionella pneumophila accounts for approximately 90% of confirmed cases of legionellosis, and L. pneumophila serogroup 1 (sg 1) has been recognized as the most important agent in this regard, as that specific strain was initially implicated as the pathogen causative of LD in 1977 (15; http://www.bacterio.cict.fr/l/legionellaceae.html). The other non-L. pneumophila sg 1 strains, sg 2 to 15, accounted for 7.4% of cases, and Legionella longbeachae (3.9%) and Legionella bozemanii (2.4%) have also been associated with the pathogen of LD. In particular, L. longbeachae has been recognized as accounting for 30.4% of community-acquired Legionella isolates in Australia and New Zealand (53).The most common transmission mechanism of legionellosis is the inhalation of aerosols from the water systems of artificial facilities, including large buildings, hotels, hospitals, public baths, spas, or decorative fountains contaminated by Legionella species (1). Therefore, hot water and water from cooling towers have been perceived as sources of infection in cases of community-acquired, nosocomially acquired, or travel-associated LD (15, 26, 31, 37, 38, 39, 41, 43). Thus, it is important from a public health perspective to continually survey environmental water systems for the presence of Legionella species (2, 34, 35). In particular, hot-water systems used as public baths, such as springs, spas, or tubs, have become a popular means of recreation in a lot of countries, including South Korea. The contamination of hot-water systems has gradually become recognized as an important risk factor all over the world (4, 12, 18, 23, 42, 50), as sources of legionellosis have been detected increasingly since 1982 (52) and many cases of nosocomially acquired (32, 51) and community-acquired (6, 7, 48) LD have been detected in Legionella-contaminated hot-water systems or hot springs.In South Korea, several cases of nosocomial infection and community-acquired pneumonia have occasionally been reported (9, 45) since the first recognized outbreak in South Korea in 1984, which was associated with Legionella gormanii (27). Since 2006, the Korean National Infectious Disease Surveillance (NIDS) program (http://dis.cdc.go.kr/) has reported an average of 20 cases of LD per year (29). In South Korea, surveys of Legionella acquired from environmental water in public facilities such as hot springs and public baths has been gradually enhanced since 2007. An annual training program for the detection of Legionella species from environmental water systems and clinical specimens is currently conducted for the personnel of 16 Provincial Institute of Health and Environment locations (PIHEs) throughout South Korea. Recently, the rate of detection of environmental Legionella bacteria has been gradually increasing (8.1% in 2006, 9.4% in 2007, and 10.3% in 2008).The principal objectives of this study were to assess the current distribution of Legionella species from environmental water sources from public facilities such as buildings, hotels, public baths, springs, hospitals, or factories throughout South Korea. Additionally, the molecular typing of L. pneumophila sg 1 isolates was conducted using sequence-based typing (SBT) to assess the genetic diversity among the isolates.  相似文献   

7.
Listeriosis is caused by the food-borne pathogen Listeria monocytogenes, which can be found in seafood and processing plants. To evaluate the risk to human health associated with seafood production in New Zealand, multi-virulence-locus sequence typing (MVLST) was used to define the sequence types (STs) of 31 L. monocytogenes isolates collected from seafood-processing plants, 15 from processed foods, and 6 from human listeriosis cases. The STs of these isolates were then compared with those from a collection of seafood isolates and epidemic strains from overseas. A total of 17 STs from New Zealand clustered into two lineages: seafood-related isolates in lineages I and II and all human isolates in lineage II. None of the New Zealand STs matched previously described STs from other countries. Isolates (belonging to ST01-N and ST03-N) from mussels and their processing environments, however, were identical to those of sporadic listeriosis cases in New Zealand. ST03-N isolates (16 from mussel-processing environments, 2 from humans, and 1 from a mussel) contained an inlA premature stop codon (PMSC) mutation. Therefore, the levels of invasiveness of 22 isolates from ST03-N and the three other common STs were compared using human intestinal epithelial Caco-2 cell lines. STs carrying inlA PMSCs, including ST03-N isolates associated with clinical cases, had a low invasion phenotype. The close relatedness of some clinical and environmental strains, as revealed by identical MVLST profiles, suggests that local and persistent environmental strains in seafood-processing environments pose a potential health risk. Furthermore, a PMSC in inlA does not appear to give L. monocytogenes a noninvasive profile.  相似文献   

8.
The objective was to obtain research-based, holistic knowledge about necessity and effect of practiced measures against L. pneumophila in municipal shower systems in Stavanger, Norway. The effects of hot water treatment and membrane-filtering were investigated and compared to no intervention at all. The studies were done under real-world conditions. Additionally, a surveillance pilot study of municipal showers in Stavanger was performed. The validity of high total plate count (TPC) as an indication of L. pneumophila was evaluated. A simplified method, named “dripping method”, for detection and quantification of L. pneumophila was developed. The sensitivity of the dripping method is 5 colony-forming units of L. pneumophila/ml. The transference of L. pneumophila from shower water to aerosols was studied. Interviews and observational studies among the stakeholders were done in order to identify patterns of communication and behavior in a Legionella risk perspective. No substantial effects of the measures against L. pneumophila were demonstrated, except for a distally placed membrane filter. No significant positive correlation between TPC and L. pneumophila concentrations were found. L. pneumophila serogroup 2–14 was demonstrated in 21% of the 29 buildings tested in the surveillance pilot. Relatively few cells of L. pneumophila were transferred from shower water to aerosols. Anxiety appeared as the major driving force in the risk governance of Legionella. In conclusion, the risk of acquiring Legionnaires'' disease from municipal shower systems is evaluated as low and uncertain. By eliminating ineffective approaches, targeted Legionella risk governance can be practiced. Risk management by surveillance is evaluated as appropriate.  相似文献   

9.

Background

Legionella is the causative agent of Legionnaires'' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella.

Methods

Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates.

Results

Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01). The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01). Legionella pneumophila was the most frequently isolated species (98.9%), and the isolated serogroups included serogroups 3 (25.3%), 6 (23.4%), 5 (19.2%), 1 (18.5%), 2 (10.2%), 8 (0.4%), 10 (0.8%), 9 (1.9%) and 12 (0.4%). Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability.

Conclusions

Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control and prevention strategies are urgently needed.  相似文献   

10.
Legionella bacteria are ubiquitous in aquatic environments. Members of the species Legionella pneumophila are responsible for more than 98% of cases of Legionnaires' disease in France. Our objective was to validate a molecular typing method called infrequent restriction site PCR (IRS PCR), applied to the study of the ecology of Legionella and to compare this method with reference typing methods, pulsed‐field gel electrophoresis (PFGE) and sequence‐based Typing (SBT). PFGE and SBT are considered as gold methods for the epidemiological typing of Leg. pneumophila strains. However, these methods are not suitable to an ecological monitoring of Legionella in natural environments where a large number of strains has to be typed. Validation of IRS PCR method was performed by the identification of 45 Leg. pneumophila isolates from cooling circuits of thermal power plants by IRS PCR, PFGE and SBT. The parameters of each method were measured and compared to evaluate the effectiveness of IRS PCR. The results of this study showed that IRS PCR has a discriminating power similar or better than that of the reference methods and thus that, by its speed and low cost represents an appropriate tool for the study of the ecology of Legionella in cooling circuits.  相似文献   

11.
Efficacy of Gemacide PN-50TM (a quaternary ammonium compound) as a commercial formulation recommended for disinfecting heat exchangers was determined for both planktonic and sessile populations of variousLegionella pneumophila strains. The quaternary ammonium compound (QAC) was preferred as an alternative due to the emerging resistance of potentially pathogenic bacteria against different biocides. PlanktonicL. pneumophila strains were suspended in tap water while sessile ones were grown on stainless steel that is used in construction of the cooling towers, then both group of strains were exposed to the biocide. The sensitivity of both planktonic and sessile populations ofL. pneumophila strains to the biocide was different. The biocide was found effective below recommended dosages (1000–2000 mg/L) against planktonic populations ofL. pneumophila, whereas it was determined that higher than the recommended dosages were required for sessile populations. The environmental isolates were more resistant to the biocide than the ATCC isolate was. The results indicated that studying only the planktonic populations ofL. pneumophila for biocide tests might not be sufficient to provide the optimum dosage and contact time information for field trials. Therefore, biocidal activity of a water treatment chemical must be evaluated in terms of dosage and contact times on both planktonic and sessile bacteria.  相似文献   

12.
Two hundred and seventy-three Haemophilus influenzae strains isolated from pediatric pneumonia patients in China were studied. We used Multilocus Sequence Typing (MLST) to analyze genotypic characteristics. All strains were biotyped and serotyped. Relatedness and patterns of genes among isolates were determined by the analysis of MLST and eBURST. H. influenzae primarily causes acute pneumonia in children under 1 year old. Nontypeable H. influenzae was responsible for most cases of pediatric pneumonia. All 273 strains were classified into eight biotypes. They mostly belonged to the I, II, and III biotypes (17.6%, 43.6%, and 22.7%, respectively). 62 strains (22.7%) produced b-lactamase. We found 28 novel alleles. Fifty different STs were found by MLST, of which 39 were novel. These were ST477 through ST508 and ST521 through ST527. Group 17 and predicted founders 503 were new groups in this study. No STs correlated with strains from Korea, which is adjacent to China. The H. influenzae strains from China appeared to have heterogeneous ST types patterns which may be the reason no outbreaks or epidemics of H. influenzae infections have occurred in Chengdu city, Sichuan, China.  相似文献   

13.
【背景】猪链球菌(Streptococcus suis,SS)血清型、基因型众多,毒力因子复杂。【目的】了解SS临床分离株血清型、毒力基因分布、分子分型特征及其之间的相关性。【方法】针对199株SS临床分离株,应用PCR技术进行血清分型和毒力基因检测,采用多位点序列分型方法(multilocus sequence typing,MLST)进行基因分型,并分析SS血清型、毒力基因型和序列型(sequence type,ST型)的流行特点及其关联性。【结果】199株SS临床分离株分属于16种血清型(1、2、3、4、6、7、8、9、10、12、15、16、21、24、29和30型),主要以2、4、3型为主,分别占26.13%(52/199)、14.57%(29/199)和12.06%(24/199),未定型(NT)菌株占21.61%(43/199)。共鉴定出72种ST型,其中ST1、ST94、ST117、ST7、ST28和ST87为主要ST型,分别占12.56%(25/199)、11.56%(23/199)、9.56%(19/199)、9.04%(18/199)、6.03%(12/199)和3.01%(6/199),另有24种新发现的ST型(ST1224—ST1227,ST1229—ST1235,ST1241—ST1242,ST1300—ST1310);分为12个克隆群(cloning complexes,CC)和32个单个ST型。199株SS分离株中毒力基因fbps的检出率最高,为96.98%(193/199);共有19种毒力基因型,其中66株(33.17%)epf-/mrp-/sly-/gapdh+/fbps+/orf2+型SS为优势毒力基因型。【结论】近年来SS的优势血清型为2、4和3型;ST型具有明显的遗传异质性,种内分化程度较高且与ST型存在一定交叉性;毒力基因分布情况存在差异,毒力基因型呈现多样化。本研究对SS临床分离株的流行特征进行探究,为猪SS病诊断、治疗和制定防控措施提供科学依据。  相似文献   

14.
Legionella Contamination in Hot Water of Italian Hotels   总被引:1,自引:0,他引:1       下载免费PDF全文
A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of ≥103 CFU liter−1, and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L.pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.  相似文献   

15.
Thirty-one epidemiologically unrelated Legionella pneumophila serogroup 1 isolates (10 from cooling towers, 10 from public spas and/or hot spring baths, and 11 from patients) were analyzed by pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) using 6 loci, flaA, pilE, asd, mip, mompS, and proA. The results of PFGE and SBT analysis indicated that all 10 isolates from cooling towers clustered into a unique type, which was distinct from strains of other environmental sources.  相似文献   

16.
Non-fermentative Gram-negative bacilli are now one of the most important causes of severe infections in Polish hospitals. Acinetobacter species are serious concern because of the high prevalence of multi-drug resistance among strains. Resistance profiles for 53 Gram-negative non-fermentative blood isolates were done. MLST was carried out using 44 strains representing the most commonly isolated species: A. baumannii, P. aeruginosa, and S. maltophilia. MLST revealed that all 22 A. baumannii belonged to sequence type (ST) 2. The P. aeruginosa isolates belonged to 10 different STs. Four S. maltophilia isolates matched STs present in the database (ST4, ST15, ST116, ST142), seven isolates showing novel sequence types. Among P. aeruginosa and S. maltophilia PFGE confirmed the genetical variety of strains.  相似文献   

17.
A new method for the rapid and sensitive detection of Legionella pneumophila in hot water systems has been developed. The method is based on an IF assay combined with detection by solid-phase cytometry. This method allowed the enumeration of L. pneumophila serogroup 1 and L. pneumophila serogroups 2 to 6, 8 to 10, and 12 to 15 in tap water samples within 3 to 4 h. The sensitivity of the method was between 10 and 100 bacteria per liter and was principally limited by the filtration capacity of membranes. The specificity of the antibody was evaluated against 15 non-Legionella strains, and no cross-reactivity was observed. When the method was applied to natural waters, direct counts of L. pneumophila were compared with the number of CFU obtained by the standard culture method. Direct counts were always higher than culturable counts, and the ratio between the two methods ranged from 1.4 to 325. Solid-phase cytometry offers a fast and sensitive alternative to the culture method for L. pneumophila screening in hot water systems.  相似文献   

18.
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.  相似文献   

19.

Background

Neisseria meningitidis diversifies rapidly, due to its high recombination rates. The aim of this study was to analyze the possible impact of two vaccination campaigns (a once-off A/C polysaccharide vaccination campaign in people aged 18 months to 20 years old in 1997, and a meningococcal C conjugate vaccination campaign in children aged ≤6 years old from 2000 to 2008) on diversification of the population of invasive isolates obtained between 1997 and 2008. All of the 461 available isolates were included (2, 319, 123, 11 and 6 belonging to serogroups A, B, C, Y and W-135, respectively).

Methodology/Principal Findings

The isolates were analyzed for diversity using multilocus sequence typing, eBURST and the S.T.A.R.T.2 program. One hundred and seven sequence types (ST) and 20 clonal complexes were obtained. Five different STs (ST11, ST8, ST33, ST1163 and ST3496) included 56.4% of the isolates. With the exception of ST11, all other STs were associated with a specific serogroup. Epidemic circulation of serogroup C ST8 isolates was detected in 1997–1998, as well as epidemic circulation of ST11 isolates (serogroups B and C) in 2002–2004. The epidemic behavior of serogroup B ST11 (ST11_B:2a:P1.5) was similar, although with lesser intensity, to that of ST11 of serogroup C. Although clonality increased during epidemic years, the overall diversity of the meningococcal population did not increase throughout the 12 years of the study.

Conclusion

The overall diversity of the meningococcal population, measured by the frequency of STs and clonal complexes, numbers of alleles, polymorphic sites, and index of association, remained relatively constant throughout the study period, contradicting previous findings by other researchers.  相似文献   

20.
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号