首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Immature liver progenitor cells have been suggested to be an important target of hepatotoxins and hepatocarcinogens. The goal of the present study was to assess the impact of 7H-dibenzo[c,g]carbazole (DBC) and its tissue-specific carcinogenic N-methyl (N-MeDBC) and 5,9-dimethyl (DiMeDBC) derivatives on rat liver epithelial WB-F344 cells, in vitro model of liver progenitor cells. We investigated the cellular events associated with both tumor initiation and promotion, such as activation of aryl hydrocarbon receptor (AhR), changes in expression of enzymes involved in metabolic activation of DBC and its derivatives, effects on cell cycle, cell proliferation/apoptosis and inhibition of gap junctional intercellular communication (GJIC). N-MeDBC, a tissue-specific sarcomagen, was only a weak inhibitor of GJIC or inducer of AhR-mediated activity, and it did not affect either cell proliferation or apoptosis. DBC was efficient GJIC inhibitor, while DiMeDBC manifested the strongest AhR inducing activity. Accordingly, DiMeDBC was also the most potent inducer of cytochrome P450 1A1 (CYP1A1) and CYP1A2 expression among the three compounds tested. Both DBC and DiMeDBC induced expression of CYP1B1 and aldo-keto reductase 1C9 (AKR1C9). N-MeDBC failed to significantly upregulate CYP1A1/2 and it only moderately increased CYP1B1 or AKR1C9. Only the potent liver carcinogens, DBC and DiMeDBC, caused a significant increase of p53 phosphorylation at Ser15, an increased accumulation of cells in S-phase and apoptosis at micromolar concentrations. In addition, DiMeDBC was found to stimulate cell proliferation of contact-inhibited WB-F344 cells at 1 microM concentration, which is a mode of action that might further contribute to its hepatocarcinogenicity. The present data seem to suggest that the AhR activation, induction of enzymes involved in metabolic activation, inhibition of GJIC or stimulation of cell proliferation might all contribute to the hepatocarcinogenic effects of DBC and DiMeDBC.  相似文献   

4.
5.
Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs) by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6) expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1) and CD49f expression, increased FAK (focal adhesion kinase) activation especially in the CD29hi population, and decreased CD61 (Integrin β3) expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer.  相似文献   

6.
Elevated expression of cytochrome P450 1B1 (CYP1B1) and estradiol 4-hydroxylation have been reported to be biomarkers of tumorigenesis in humans. The aromatic hydrocarbon receptor (AhR) regulates expression of human cytochrome P450 1A1 (CYP1A1) and CYP1B1, 17β-estradiol (E2) 2- and 4-hydroxylases, respectively. There is also evidence that expression of estrogen receptor α (ERα) potentiates CYP1A1 inducibility in breast cancer cells. To characterize these relationships further, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), which downregulates ERα, and the high-affinity AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of AhR, ERα, CYP1A1, and CYP1B1 in MCF-7 human breast cancer cells. Treatment with TPA, which suppressed ERα mRNA levels, caused a greater than fourfold elevation of AhR mRNA and protein levels, whereas treatment with TCDD caused a decrease in AhR protein but no change in ERα or AhR mRNA levels. In MCF-7 cells treated with TPA prior to treatment with TCDD, the AhR mRNA level was elevated, the ERα mRNA level remained suppressed, and the ratio of CYP1B1 to CYP1A1 mRNA was increased compared with treatment with TCDD alone. A corresponding increase in the ratio of the rates of 4- to 2-hydroxylation pathways of E2 metabolism was also observed in response to pretreatment with TPA prior to the addition of TCDD. These results demonstrate differential regulation of the human CYP1A1 and CYP1B1 genes and provide a cellular model to investigate further the mechanisms that may be involved in the elevated expression of CYP1B1 in tumorigenesis. J. Cell. Biochem. 70:289–296, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.  相似文献   

8.
9.
Nearly 40 000 women die annually from breast cancer in the United States. Clinically available targeted breast cancer therapy is largely ineffective in triple negative breast cancer (TNBC), characterized by tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2). TNBC is associated with a poor prognosis. Previous reports show that aryl hydrocarbon receptor (AhR) partial agonist 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) selectively inhibits the growth of breast cancer cells, including those of the TNBC subtype. We previously demonstrated that 5F 203 induced the expression of putative tumor suppressor gene cytoglobin (CYGB) in breast cancer cells. In the current study, we determined that 5F 203 induces apoptosis and caspase-3 activation in MDA-MB-468 TNBC cells and in T47D ER+ PR + Her2 breast cancer cells. We also show that caspases and CYGB promote 5F 203–mediated apoptosis in MDA-MB-468 cells. 5F 203 induced lysosomal membrane permeabilization (LMP) and cathepsin B release in MDA-MB-468 and T47D cells. In addition, silencing CYGB attenuated the ability of 5F 203 to induce caspase-3/-7 activation, proapoptotic gene expression, LMP, and cathepsin B release in MDA-MB-468 cells. Moreover, 5F 203 induced CYGB protein expression, proapoptotic protein expression, and caspase-3 cleavage in MDA-MB-468 cells and in MDA-MB-468 xenograft tumors grown orthotopically in athymic mice. These data provide a basis for the development of AhR ligands with the potential to restore CYGB expression as a novel strategy to treat TNBC.  相似文献   

10.
11.
Cervical cancer (CC) is one of the most common cancers in women, and is linked to human papillomavirus (HPV) infection. The virus oncoprotein E6 binds to p53, resulting in its degradation and allowing uncontrolled cell proliferation. Meanwhile, the HPV E7 protein maintains host cell differentiation by targeting retinoblastoma tumor suppressor. The host cell can ubiquitinate E6 and E7 through UBE2L3, whose expression depends on the interaction between the aryl hydrocarbon receptor (AhR) with Xenobiotic Responsive Elements (XREs) located in the UBE2L3 gene promoter. In this study, we used cell culture to determine the effect of indole-3-carbinol (I3C) over cellular viability, apoptosis, cell proliferation, and mRNA levels of UBE2L3 and CYP1A1. In addition, patients’ samples were used to determine the mRNA levels of UBE2L3 and CYP1A1 genes. We found that I3C promotes the activation of AhR and decreases cell proliferation, possibly through UBE2L3 mRNA induction, which would result in the ubiquitination of HPV E7. Since there is a strong requirement for selective and cost-effective cancer treatments, natural AhR ligands such as I3C could represent a novel strategy for cancer treatment.  相似文献   

12.
13.
7, 12- Dimethylbenz-(a)-anthracene (DMBA) has been used for a long time to induce rat mammary gland carcinogenesis. In a previous paper we described the effects of diet, of non-steroidal anti-inflammatory drugs and the combination of these two factors on breast cancer. We also pointed out that DMBA tumor generating process is still poorly understood. The present study attempts to explore whether P53 or the pro-apoptotic protein Bcl-2 are potential targets of DMBA in its induction of breast tumors in the Sprague-Dawley rat breast tumorigenesis model. Our results indicate that the DBMA-induced tumors are apparently the result of P53 inactivation. This inactivation results in tumorigenesis, probably aided by the absence of Bcl-2 in the tumor cells of the Sprague-Dawley rat animal model. We discuss the potential mechanisms by which P53 inactivation results in tumorigenesis.  相似文献   

14.
Han EH  Hwang YP  Jeong TC  Lee SS  Shin JG  Jeong HG 《FEBS letters》2007,581(4):749-756
Typically, chemopreventive agents either inhibit the cytochrome P450s (CYPs) that are essential for the metabolism of carcinogens or induce phase II detoxifying enzymes. This study examined the chemopreventive effect of eugenol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced DNA damage in MCF-7 cells. Eugenol inhibited the formation of the DMBA-DNA adduct in a dose dependent manner. CYP1A1 and CYP1B1 activity, which catalyze the biotransformation of DMBA, were strongly inhibited by eugenol. Eugenol also suppressed the CYP1A induction by DMBA through decreased aryl hydrocarbon receptor activation and subsequent DNA binding. Furthermore, eugenol increased the expression and activity of NAD(P)H:quinone oxidoreductase (QR), a major detoxifying enzyme for DMBA, through NF-E2 related factor2 binding to antioxidant response element in QR gene. Therefore, eugenol has a potent protective effect against DMBA-induced genotoxicity, presumably through the suppression of the DMBA activation and the induction of its detoxification. These results suggest that eugenol has potential as a chemopreventive.  相似文献   

15.
16.
17.
In the present study, we investigated the effect of allyl isothiocyanate (AITC) on liver detoxification signaling pathway in 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis. Mammary tumor was induced by a single dose of DMBA (25 mg/rat) injected subcutaneously near the mammary gland in Sprague–Dawley rats. DMBA-alone-treated rats show an increased synthesis of phase I detoxification enzymes, lipid peroxidative markers, liver marker enzymes, and lipid profiles whereas, depletion of phase II detoxification enzymes and antioxidants in rat liver tissues. Oral administration of AITC restored the levels of biochemical markers in DMBA-treated rats. Furthermore, histopathological results also confirmed that AITC protects DMBA-mediated hepatocellular damage. We also observed that AITC treatment significantly downregulates AhR and upregulates the expression of Nrf2 in DMBA-treated rats. The binding efficacy of AITC with AhR and Nrf2 analysis by molecular docking studies reveals that AITC has strong interaction with AhR and Nrf2 proteins through hydrogen and hydrophobic interactions. Thus, AITC prevents DMBA-induced mammary carcinogenesis via inhibition of phase I and induction of phase II detoxification enzymes by modulating AhR/Nrf2 signaling pathway.  相似文献   

18.
Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC–MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens.SummaryDietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue.  相似文献   

19.
20.
Halogenated and polycyclic aromatic hydrocarbons, exogenous ligands of the aryl hydrocarbon receptor (AhR), cause various toxicological effects through the transformation of the AhR. In this study, we investigated the antagonistic effects of indigoids on the transformation in addition to their agonistic ones. In a cell-free system, indigoids induced the transformation dose-dependently, but suppressed the transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the binding of 3-methylcholanthrene to the AhR. In mouse hepatoma Hepa-1c1c7 cells, indigoids, especially indirubin, suppressed the transformation and expression of CYP1A1 by inhibiting the translocation of AhR into the nucleus. When orally administered to mice at 10 mg/kg BW/day for three successive days, indigoids did not induce AhR transformation and expression of the CYP1A subfamily in the liver, while indirubin and indigo upregulated quinone reductase activity. These results indicate that indigoids are able to bind to the AhR as ligands and exhibit antagonistic effects at lower concentrations in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号