首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternaria leaf blight is one of the most common diseases in watermelon worldwide. In Korea, however, the Alternaria species causing the watermelon leaf blight have not been investigated thoroughly. A total of 16 Alternaria isolates was recovered from diseased watermelon leaves with leaf blight symptoms, which were collected from 14 fields in Korea. Analysis of internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and RNA polymerase II second largest subunit (RPB2) were not competent to differentiate the Alternaria isolates. On the contrary, analysis of amplicon size of the histone H3 (HIS3) gene successfully differentiated the isolates into three Alternaria subgroups, and further sequence analysis of them identified three Alternaria spp. Alternaria tenuissima, A. gaisen, and A. alternata. Representative Alternaria isolates from three species induced dark brown leaf spot lesions on detached watermelon leaves, indicating that A. tenuissima, A. gaisen, and A. alternata are all causal agents of Alternaria leaf blight. Our results indicate that the Alternaria species associated watermelon leaf blight in Korea is more complex than reported previously. This is the first report regarding the population structure of Alternaria species causing watermelon leaf blight in Korea.  相似文献   

2.
A total of 89 freshly harvested soybean seed samples (Roundup Ready [transgenic] soybean cultivars) from the 2010/2011 crop season were collected from five locations in the Northern Pampean Region II, Argentina. These samples were analyzed for internal mycoflora, toxin production of isolated fungi, and for a range of mycotoxins. Mycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs) and ochratoxin A (OTA) was done by HPLC-FLD (high performance liquid chromatography with postcolumn fluorescence derivatization), alternariol and alternariol monomethyl ether with HPLC-UV (HPLC with UV detection), trichothecenes (deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, fusarenon X, 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were analyzed by GC-ECD (gas chromatography with electron capture detector). Fungal colonization was more frequently found for samples from América, Saladillo and Trenque Lauquen than for samples from General Villegas and Trenel; a total of 1,401 fungal isolates were obtained from the soybean seeds. The most commonly identified fungal genera were Alternaria, Sclerotinia, Chaetomium, Cladosporium, Aspergillus, Penicillium, Phomopsis and Fusarium. Alternaria alternata, A.tenuissima, Aspergillus flavus, Penicillium citrinum, Fusarium verticillioides and F.semitectum were the predominant toxigenic fungal species. Mycotoxin production was confirmed for several isolates of toxigenic species, including Aspergillus flavus, A. parasiticus, Alternaria alternata, A.tenuissima, Fusarium graminearum, F semitectum and F. verticillioides. In particular, the percentage of mycotoxigenic Alternaria alternata (100 %), A.tenuissima (95 %) and aflatoxigenic strains of A. flavus (57 %) were remarkably high. Although none of the mycotoxins, AFs, ZEA, FBs, trichothecenes and OTA, were directly detected in samples of soybean seeds, the frequent presence of toxigenic fungal species indicates the risk of multiple mycotoxin contamination.  相似文献   

3.
The effect of different light wavelengths on the development of lesions induced by Alternaria tenuissima in broad bean leaves was investigated. Lesion development was completely suppressed in red‐light‐irradiated broad bean leaflets, irrespective of isolate or spore concentration. Pre‐treatment of leaflets with red light for 24 h before inoculation also suppressed lesion development. Alternaria tenuissima failed to produce infection hyphae in red‐light‐irradiated broad bean leaflets. These results indicate that disease suppression in broad bean leaflets is due to light‐induced resistance. Spore germination fluid (SGF) of A. tenuissima allowed non‐pathogenic Alternaria alternata to infect wounded and unwounded broad bean leaflets kept in the dark, results suggesting that SGF induced susceptibility. Red light suppressed susceptibility induced by A. tenuissima SGF; thus, lesion formation and development were suppressed when leaflets inoculated with the spores of A. alternata suspended in A. tenuissima SGF were kept under red light. From these results, we conclude that red light induced resistance in broad bean to leaf spot disease caused by A. tenuissima, and that SGF induced susceptibility of broad bean leaflets to a non‐pathogenic isolate of A. alternata.  相似文献   

4.
A polyphasic approach was set up and applied to characterize 20 fungal endophytes belonging to the genus Alternaria, recovered from grapevine in different Italian regions.Morphological, microscopical, molecular and chemical investigations were performed and the obtained results were combined in a pooled cluster analysis. Following morphological analyses, all strains were grouped according to their three-dimensional sporulation pattern on PCA and to the colony characteristics on different substrates. After DNA extraction, all strains were analyzed by RAPD-PCR and the resulting profiles were subjected to cluster analysis. The metabolites extracted from the 20 Alternaria endophytes were analyzed by a HPLC and the resulting metabolite profiles were subjected to multivariate statistic analyses. In comparison with reference ‘small-spored’ Alternaria species, the 20 strains were segregated into two morphological groups: one belonging to the A. arborescens species-group and a second to the A. tenuissima species-group. RAPD analysis also showed that grapevine endophytes belonged to either the A. arborescens or the A. tenuissima species-group and that they were molecularly distinct from strains belonging to A. alternata. Chemotaxonomy gave the same grouping: the grapevine endophytic strains belong to A. arborescens or A. tenuissima species-groups producing known metabolites typical of these species-groups. Interestingly, the 20 grapevine endophytes were able to produce also a number of unknown metabolites, whose characterization could be useful for a more precise segregation of the two species-groups.The results show how complementary morphological, molecular and chemical data can clarify relationships among endophyte species-groups of low morphological divergence.  相似文献   

5.
BackgroundMany Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii.AimsTo determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification.MethodsThe profiles of secondary metabolites were determined by HPLC MS.ResultsThe Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins.ConclusionsSecondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics.  相似文献   

6.
The remaining unclarified taxon among the seven known pathotypes of host-selective toxin (HST)-producing Alternaria alternata, namely, the strawberry pathotype (the strawberry black leaf spot pathogen), is taxonomically revised and re-described herein. According to our morphological observations, reference isolates of strawberry and Japanese pear pathotypes, which are toxic to leaves of Japanese pear ‘Nijisseiki’, have conidia that are formed in chains of 3–13, usually without lateral branches, after 7?d incubation on potato-carrot agar. The mean size of the conidia is 27–31?×?11–13?μm. Morphological characteristics of the examined isolates are identical to those of A. gaisen rather than A. alternata. A phylogenetic tree obtained by analysis of a combined dataset of ITS, gapdh, rpb2, tef1, Alt a 1, and endoPG sequences also strongly supports both pathotypes as one species, A. gaisen. We re-describe the fungus as A. gaisen Nagano ex Bokura and propose two formae speciales of the species, A. gaisen f. sp. fragariae producing AF-toxin and f. sp. pyri producing AK-toxin. The epitype specimen and ex-epitype culture of A. gaisen are newly designated.  相似文献   

7.
8.
This study examined the genetic diversity of small-spored Alternaria species in the southwest desert of the USA by sampling 552 isolates from different habitats (soil and plant debris) in different locations (urban and an undisturbed desert). To estimate the genetic diversity, Amplified Fragment Length Polymorphism (AFLP) fingerprinting analysis was performed for all isolates. Strains representative of the sampled genotypic diversity (n = 125) were further characterized according their sporulation pattern and the capability to produce allergens. Morphological characterization assigned the majority of the strains to the Alternaria alternata and Alternaria tenuissima morpho-groups with only two isolates assigned to the Alternaria arborescens morpho-group. AFLP fingerprinting differentiated the A. arborescens morpho-groups, but could not distinguish between the A. alternata and A. tenuissima morpho-groups. Western blot analysis showed that a large number of allergenic proteins were produced by strains. These proteins were not specific for any morpho-group nor source of isolation. A hierarchical analysis of molecular variance was performed on the AFLP data to quantify molecular variation and partition this variation among sampled locations and habitat. No statistically significant differentiation among locations and habitat was detected indicating a lack of population structure across environments.  相似文献   

9.
《Fungal biology》2022,126(4):277-289
Alternaria rot has been recently described as an emerging fungal disease of citrus causing significant damage in California groves. A survey was conducted to determine latent infections on fruits, twigs, and leaves and investigate their seasonal patterns during 2019 and 2020. On fruits, latent infections were more associated with the stem end than with the stylar end, except during spring when a significantly high percentage of flowers (86%) had latent infections. Latent infections on twigs varied markedly between years (28% in 2019 and 9.5% in 2020), while Alternaria spp. were also recovered from citrus leaves. Alternaria isolates collected during the survey were identified based on multigene sequence analysis, confirming that Alternaria alternata and Alternaria arborescens are the two species associated with infections of citrus fruits. Of the 23 isolates, 19 were identified as A. alternata and demonstrated the dominance of this species over A. arborescens. Isolates representing populations of these two species were selected as representative isolates for physiological and morphological studies. A. alternata and A. arborescens showed similar conidial dimensions but differed in the number of conidia produced. Growth rates demonstrated that A. alternata grows faster than A. arborescens at all the temperatures evaluated, except at 25 and 35 °C. The growth patterns were similar for both species. The sporulation rate of the Alternaria isolates was influenced differently by temperature. This parameter also influenced conidial germination and appressorium formation, and no significant differences were observed between Alternaria species. Pathogenicity and aggressiveness tests on detached fruit demonstrated the ability of A. alternata and A. arborescens to cause internal lesions and produce fruit drop in the orchards with no quantitative differences between them (disease severity indexes of 58 and 68%, respectively). The fungicide sensitivity tests showed that DMI fungicides are the most effective fungicides in reducing mycelial growth. The SDHI fungicides had intermediate activity against the mycelial growth but also suppressed spore germination. The spore germination assay suggested that some of the isolates included in this study might have some level of resistance to QoI and SDHI fungicides. The findings of this study provide new information about the pathogens associated with the excessive fruit drop recently observed in some California citrus groves.  相似文献   

10.
The incidence ofAlternaria spp. on seed samples of cruciferous vegetable crops was surveyed between 1990 and 1992. Some commercial seed lots of crucifers which are commonly grown in Japan were infested withAlternaria species. ThreeAlternaria species were encountered on the seed samples ofBrassica campestris, B. orelacea, andRaphanus sativus. The most frequently detected species wereA. japonica andA. alternata onB. campestris, A. brassicicola onB. oleracea, andA. japonica andA. alternata onR. sativus, respectively.Alternaria brassicae was not detected in this study.Alternaria brassicicola isolates from these crops produced necrotic lesions on all of the crucifer seedlings inoculated, whileA. japonica induced different reactions in different plants or plant parts depending on isolates used in inoculation tests. In contrast, most isolates ofA. alternata could not produce necrotic lesions on foliage leaves of crucifers inoculated, although some of them produced clear lesions only on cotyledons.Alternaria alternata associated with these cruciferous crop seeds was considered to be an oppotunistic parasite of these crops.  相似文献   

11.
Alternaria alternata is of major significance as a food and feed contaminant and is able to produce a range of mycotoxins that may elicit adverse effects in both animals and humans. We describe the isolation and characterization of five microsatellite markers for studying A. alternata. Marker polymorphism was screened in 64 isolates of A. alternata. The number of alleles per locus ranged from eight to 24, and allelic diversity ranged from 0.425 to 0.882. These markers will be useful in the study of relationships and population genetics amongst isolates of A. alternata.  相似文献   

12.
Fifty-seven of 87 isolates of Alternaria alternata (Fr) Keissler grown on autoclaved, moist corn-rice substrate and fed to rats were lethal. The major toxin produced was isolated and characterized as tenuazonic acid. Twenty of 23 toxigenic Alternaria isolates examined produced tenuazonic acid. No tenuazonic acid could be detected in either of the field samples of sorghum or blackeyed peas, which were heavily invaded by Alternaria.  相似文献   

13.
Recently, 24 sections were characterised in the genus of Alternaria. In this work, 27 isolates of Alternaria belonging to section Alternaria were isolated from different sources in Qena governorate, Egypt. The collected strains were identified using multi-locus products of internal transcribed spacer (ITS) region, small subunit (SSU), large subunit (LSU) and Alt a1 gene. Based on four loci, the phylogenetic analysis revealed that 26 isolates (96.3% of total isolates) identified as A. alternata and the last one isolate (3.7%) as A. arborescens. The different strains of Alternaria exhibited enzymatic variability ranged from 0.1 ± 0.07–2.3 ± 0.13U/ml for cellulase and 0.6 ± 0.20–3.7 ± 0.47 U/ml (pectinase). Within A. alternata isolates, biochemical properties (Cellulase and pectinase) did not correlate either to phylogenetic analysis or strain origin.  相似文献   

14.
The aim of the present work was to determine the influence of Alternaria alternata upon aflatoxin production by Aspergillus parasiticus.A mixture of spores of both strains was inoculated in sunflower seeds at 0,90 aw, and incubated for 42 days at 28 °C ±1.The cultures were observed and analyzed every 7 days to determine the infection level of the seeds and the production of aflatoxins. Results showed that when the seeds were inoculated only with Aspergillus parasiticus, 100% were infected from the 7th day.When Aspergillus parasiticus and Alternaria alternata were simultaneously inoculated the infection level of the seeds was 100% for Aspergillus parasiticus following 7 days of inoculation and 0% for Alternaria alternata. After the 14th day of inoculation there was no significant difference in the infection percentage of both strains (approximately 80% of each one). As far as toxin production is concerned a remarkable decrease was observed when seeds were inoculated with both strains simultaneously.In accordance to the results, Alternaria alternata would not compete with Aspergillus parasiticus in colonization of seeds but would either degrade the aflatoxins by Aspergillus parasiticus or compete for aflatoxin biosynthesis precursors. Alternaria alternata could also secrete some substance that specifically inhibits aflatoxin synthesis.  相似文献   

15.
Thirty Alternaria brassicae (Berk.) Sacc. isolates from diverse geographical locations of India were studied for pathogenic variability on seed, cotyledon and true leaves of Brassica species. Seed germination was reduced maximum by isolate BAB‐39 in Brassica juncea cultivar Varuna (22.1%), Brassica rapa var. Toria cultivar PT‐303 (12%), Brassica carinata cultivar Kiran (12%), Brassica napus cultivar GSL‐1 (11%) and tolerant source of B. juncea genotype PHR‐2 (7%), although least by isolate BAB‐49. Maximum lesion size on leaf was recorded in B. juncea cultivar Rohini (11.2, 16.5 and 16.8 mm) with isolates BAB‐09 (Pantnagar), BAB‐19 (Bharatpur) and BAB‐39 (Kangra), respectively, and categorized as highly virulent, while minimum lesion size of 3.2, 3.7 and 3.8 mm was observed with isolates BAB‐47 (Tonk), BAB 49 (Jobner) and BAB 04 (Kamroop), respectively, considered the weak isolates. On B. alba, BAB‐09, BAB‐19 and BAB‐39 isolates caused maximum lesion size of 3.7, 3.8 and 3.9 mm, respectively, even though it showed maximum tolerance. In both seed and cotyledon inoculation method, the per cent Alternaria blight severity above 80% was observed with isolate of BAB‐39 (91.5%), BAB‐19 (89.0%), BAB‐09 (85.5%) and least in isolate BAB‐49 (34.0%). Brassica seed, cotyledon and leaf showed the similar positive response for categorizing A. brassicae isolates as virulent and avirulent. This information could be used to the development and assessment of resistant brassica germplasm, especially with A. brassicae populations exhibiting increased virulence.  相似文献   

16.
Twenty-one isolates ofAlternaria infectoria have been screened for their production of secondary metabolites for chemotaxonomic characterization. For comparison isolates ofA. tenuissima andStemphylium sarciniforme were also screened.A. infectoria andA. tenuissima had two unknown metabolites and none known metabolites in common.A. infectoria had two other unknown metabolites in common withS. sarciniforme. The positions of six unknown metabolites in the metabolite profile ofA. infectoria have been determined. UV-spectra and retention time indices of these six metabolites are given.  相似文献   

17.
Alternaria late blight caused by Alternaria spp. in the alternata, tenuissima and arborescens species‐groups is one of the most common fungal diseases of pistachio in California. A single point mutation resulting in the replacement of a glycine by an alanine at codon 143 (G143A) in the mitochondrial cytochrome b (cyt b) has been found in all azoxystrobin‐resistant isolates of these three species from California pistachio. In this study, a pair of allele‐specific polymerase chain reaction (PCR) primers was developed to detect this point mutation. The allele‐specific PCR assay coupled with a rapid DNA extraction method could detect azoxystrobin‐resistant Alternaria isolates in a few hours. The allele‐specific PCR method was also reliable for detecting azoxystrobin‐resistant Alternaria directly in both laboratory‐inoculated and naturally infected pistachio leaves.  相似文献   

18.
Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on the sequence data of a region consisting of the 5.8S RNA gene and internal transcribed spacers—ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of A. helianthi. The specificity of the primer pairs AhN1F and AhN1R designed was verified by PCR analysis of DNA from 18 Alternaria helianthi strains isolated from India, 14 non-target Alternaria spp. and 11 fungal isolates of other genera. A single amplification product of 357-bp was detected from DNA of A. helianthi isolates. No cross-reaction was observed with any of the other isolates tested. The detection limit of the PCR method was of 10?pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification of A. helianthi. This is the first report of an A. helianthi-specific primer set.  相似文献   

19.
UV-A* irradiation caused increases in total protein in Fusariumsolani, while its effect on Alternaria alternata was variable,and not as clear-cut as in F. solani. On the other hand, UV-Birradiation stimulated protein production in both fungi. UV-Airradiation showed an inhibitory effect on total DNA in bothfungi, while the effect on RNA was stimulatory in F. solanibut had no effect on A. alternata. Short fluences of UV-B inhibitedDNA production to some extent in both fungi, however longerfluences increased DNA content especially in F. solani. Theeffect of UV-B on RNA production was inhibitory in F. solanibut not in A. alternata. A. alternata is much more resistantto UV-irradiation than is F. solani, and increases in proteinin the former after UV-irradiation suggests that protein mayplay a part in protection against the harmful effect of UV-irradiation. UV-A, UV-B, fluence, protein, nucleic acids, Alternaria alternata, Fusarium solani  相似文献   

20.
Alternaria leaf spots of gerbera (Gerbera jamesonii H. Bolus ex J. D. Hook) were observed on plants from different greenhouses on commercial plants in Bulgaria. The symptoms of the disease on the leaves were characterized by the development of brown, small, scattered dots, which gradually enlarged and coalesced to form large, oval, circular or irregular, brown to black lesions with concentric rings. Affected plants showed lower vitality, suppressed development and fewer, smaller, distorted in shape flowers. Alternaria isolates, obtained from infected leaf tissues were grown in pure culture and the morphological characteristics of the colony and sporulation apparatus were determined. DNA, extracted from the fungal isolates was subjected to polymerase chain reaction (PCR) with primers ITS1/ITS4, amplifying the internal transcribed spacer (ITS) regions. The resulting products were sequenced and compared for homology with other species in the GeneBank. The isolates showed 94% homology of the ITS region with either Alternaria alternata, A. arborescens, A. tenuissima, A. longipes, A. lini or A. smyrnii. None of the studied isolates was amplified with the A. alternata specific primers AAF2/AAR3, indicating that they are pathogenic varieties of it or belong to another species. Pathogenicity tests on 10 gerbera cultivars revealed that all of them were susceptible to Alternaria leaf spot. Additional tests on nine other crops (Solanum lycopersicum, Calendula officinalis, Capsicum annuum, Celosia argantea, Pelargonium spp., Petunia hybrida, Nicotiana tabacum, Cucurbita moscata and Raphanus sativus var. radicina) and on tomato or pepper fruits, potato tubers and carrot roots also indicated that all tested plant species were potential hosts of the disease. This is the first report of highly virulent isolates of Alternaria spp. in Bulgaria that cause leaf spots on gerbera in greenhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号