首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeRadiolabeled oligomers complementary to the 16S rRNA in bacteria were investigated as bacterial infection imaging agents.Methods and resultsIdentical sequences with backbones phosphorodiamidate morpholino (MORF), peptide nucleic acid (PNA), and phosphorothioate DNA (PS-DNA) were 99mTc-labeled and evaluated for binding to bacterial RNA. MORF binding to RNA from Escherichia coli strains SM101 and K12 was 4- and 150-fold higher compared to PNA and PS-DNA, respectively. Subsequently MORF oligomer in fluorescence in situ hybridization showed a stronger signal with study MORF compared to control in fixed preparations of two E. coli strains and Klebsiella pneumoniae. Flow cytometry analysis showed study MORF accumulation to be 8- and 80-fold higher compared to the control in live K. pneumoniae and Staphylococcus aureus, respectively. Further, fluorescence microscopy showed increased accumulation of study MORF over control in live E. coli and K. pneumonia. Binding of 99mTc-study MORF to RNA from E. coli SM101 and K12 was 30.4 and 117.8 pmol, respectively, per 1010 cells. Mice with K. pneumoniae live or heat-killed (sterile inflammation) in one thigh at 90 min for both 99mTc-study MORF and control showed higher accumulation in target thighs than in blood and all other organs expect for kidneys and small intestine. Accumulation of 99mTc-study MORF was significantly higher (p = 0.009) than that of the control in the thigh with sterile inflammation.ConclusionA 99mTc-MORF oligomer complimentary to the bacterial 16S rRNA demonstrated binding to bacterial RNA in vitro with specific accumulation into live bacteria. Radiolabeled MORF oligomers antisense to the bacterial rRNA may be useful to image bacterial infection.  相似文献   

2.
Urinary tract infections (UTI) account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs), such as asymptomatic bacteriuria (ASB) strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC), it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms.  相似文献   

3.
Light activation of photosensitizing dyes in presence of molecular oxygen generates highly cytotoxic reactive oxygen species leading to cell inactivation. Nucleic acids are molecular targets of this photodynamic action but not considered the main cause of cell death. The in vivo effect of the photodynamic process on the intracellular nucleic acid content of Escherichia coli and Staphylococcus warneri was evaluated herein.Two cationic porphyrins (Tetra-Py+-Me and Tri-Py+-Me-PF) were used to photoinactivate E. coli (5.0 μM; 108 cells mL?1) and S. warneri (0.5 μM; 108 cells mL?1) upon white light irradiation at 4.0 mW cm?2 for 270 min and 40 min, respectively. Total nucleic acids were extracted from photosensitized bacteria after different times of irradiation and analyzed by agarose gel electrophoresis. The double-stranded DNA was quantified by fluorimetry and the porphyrin binding to bacteria was determined by spectrofluorimetry.E. coli was completely photoinactivated with both porphyrins (5.0 μM), whereas S. warneri was only completely inactivated by Tri-Py+-Me-PF (0.5 μM). The hierarchy of nucleic acid changes in E. coli was in the order: 23S rRNA > 16S rRNA > genomic DNA. The nucleic acids of S. warneri were extensively reduced after 5 min with Tri-Py+-Me-PF but almost unchanged with Tetra-Py+-Me after 40 min of irradiation. The amount of Tri-Py+-Me-PF bound to E. coli after washing the cells is higher than Tetra-Py+-Me and the opposite was observed for S. warneri. The binding capacity of the photosensitizers is not directly related to the PDI efficiency or nucleic acid reduction and this reduction occurs in parallel with the decrease of surviving cells.  相似文献   

4.
The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2′-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2′-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.  相似文献   

5.
Bacterial urinary tract infections (UTI) are a major growing concern worldwide. Uropathogenic Escherichia coli has been shown to invade the urothelium during acute UTI in mice and humans, forming intracellular reservoirs that can evade antibiotics and the immune response, allowing recurrence at a later date. Other bacterial species, such as Staphylococcus saprophyticus, Klebsiella pneumonia and Salmonella enterica have also been shown to be invasive in acute UTI. However, the role of intracellular infection in chronic UTI causing more subtle lower urinary tract symptoms (LUTS), a particular problem in the elderly population, is poorly understood. Moreover, the species of bacteria involved remains largely unknown. A previous study of a large cohort of non-acute LUTS patients found that Enterococcus faecalis was frequently found in urine specimens. E. faecalis accounts for a significant proportion of chronic bladder infections worldwide, although the invasive lifestyle of this uropathogen has yet to be reported. Here, we wanted to explore this question in more detail. We harvested urothelial cells shed in response to inflammation and, using advanced imaging techniques, inspected them for signs of bacterial pathology and invasion. We found strong evidence of intracellular E. faecalis harboured within urothelial cells shed from the bladder of LUTS patients. Furthermore, using a culture model system, these patient-isolated strains of E. faecalis were able to invade a transitional carcinoma cell line. In contrast, we found no evidence of cellular invasion by E. coli in the patient cells or the culture model system. Our data show that E. faecalis is highly competent to invade in this context; therefore, these results have implications for both the diagnosis and treatment of chronic LUTS.  相似文献   

6.
Uropathogenic E. coli (UPEC) expressing type 1 pili underlie most urinary tract infections (UTIs). UPEC adherence to the bladder urothelium induces a rapid apoptosis and exfoliation of terminally differentiated urothelial cells, a critical event in pathogenesis. Of the four major uroplakin proteins that are densely expressed on superficial urothelial cells, UPIa serves as the receptor for type 1-piliated UPEC, but the contributions of uroplakins to cell death are not known. We examined the role of differentiation and uroplakin expression on UPEC-induced cell death. Utilizing in vitro models of urothelial differentiation, we demonstrated induction of tissue-specific differentiation markers including uroplakins. UPEC-induced urothelial cell death was shown to increase with enhanced differentiation but required expression of uroplakin III: infection with an adenovirus encoding uroplakin III significantly increased cell death, while siRNA directed against uroplakin III abolished UPEC-induced cell death. In a murine model of UTI where superficial urothelial cells were selectively eroded to expose less differentiated cells, urothelial apoptosis was reduced, indicating a requirement for differentiation in UPEC-induced apoptosis in vivo. These data suggest that induction of uroplakin III during urothelial differentiation sensitizes cells to UPEC-induced death. Thus, uroplakin III plays a pivotal role in UTI pathogenesis.  相似文献   

7.
8.
Klebsiella pneumoniae and Escherichia coli form mixed species biofilms in catheter-associated urinary tract infections. Recently, a detrimental effect of K. pneumoniae over E. coli was observed in mixed species biofilms grown in an artificial urine medium. The mechanism behind this competitive interaction was studied. K. pneumoniae partially outcompeted E. coli in early-stage batch-fed biofilms, whereas both microorganisms co-exist at longer times (K. pneumoniae:E. coli ratio, 55:1), as shown by cell counts and confocal microscopy. E. coli cells were scattered along the K. pneumoniae biofilm. Biofilm supernatants did not appear to contain either antimicrobial or anti-biofilm activities against E. coli. Biofilms grown under continuous flow prevented interspecies competition. K. pneumoniae showed both increased siderophore production and better growth in iron-limited media compared to E. coli. In summary, these results indicate the importance of nutrient (particularly iron) competition in the modulation of the bacterial composition of mixed species biofilms formed by uropathogenic K. pneumoniae and E. coli.  相似文献   

9.
We investigated the effects of replacing third-/fourth-generation cephalosporins with piperacillin–tazobactam on the rate of acquisition of extended spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli by patients hospitalized in a Department of Respiratory Medicine.This 9-month, prospective, non-controlled, intervention study comprised two phases: a 3-month pre-intervention phase (Phase I) and a 6-month intervention phase (Phase II), during which the use of third-/forth-generation cephalosporins was restricted and replaced by piperacillin–tazobactam. Rectal swabs were obtained within 24 h after admission (baseline screening), weekly, and 48 h before discharge during Phase I and the last 3 months of Phase II (Phase IIb). Swabs were tested for E. coli and K. pneumoniae, and extended spectrum β-lactamase production was detected with the double disc test.Use of third/fourth-generation cephalosporins decreased by 63.0% and 100%, respectively; while the use of piperacillin–tazobactam increased by 28-fold. The rate of acquisition of extended spectrum β-lactamase-producing E. coli and K. pneumoniae together in rectal swab specimens decreased in Phase IIb as compared with Phase I (19.5% vs 29.5%). Few rectal swab specimens were positive for extended spectrum β-lactamases-producing K. pneumoniae, and no substantial decrease in the rate of its acquisition was observed.  相似文献   

10.
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.  相似文献   

11.

Background

In children, urinary tract infection (UTI) is one of a common bacterial infection. This study was conducted to detect the uropathogen, antimicrobial susceptibility, pathogen associated with recurrences and renal scarring in children initially taken care from general practitioners and later presented to tertiary care.

Methods

Every inward UTI episode, culture and antimicrobial susceptibility was done while on past 6-month, history of infections and use of antimicrobials was collected using clinical records and demonstration of antimicrobials. Children with recurrent pyelonephritis was followed and in vitro bio film formation was assessed.

Results

Frequency of UTI was significantly high among infants (p?=?0.03). Last 6-month, all (220) were exposed to antimicrobials. Cefixime was the commonly prescribed antimicrobial (p?=?0.02). In current UTI episode, 64.5% (142/220) of children with UTI were consulted GPs’ prior to seek treatment from tertiary care pediatric unit (p?=?0.02). While on follow up child who developed UTI, found urine culture isolates were significantly shifted from E. coli and K. pneumoniae to extended spectrum of beta-lactamase (ESBL) E. coli and K. pneumoniae. Out of 208 participants, 36 of them had re-current pyelonephritis (R-PN). Renal scarring (RS) was detected in 22 out of 70 patients with pyelonephritis following dimercaptosuccinic acid scan. Following each episodes of recurrent pyelonephritis 11% of new scar formation was detected (p?=?0.02). Bio film forming E. coli and K. pneumoniae was significantly associated in patients with R-PN (p?=?0.04).

Discussion

Medical care providers often prescribe antimicrobials without having an etiological diagnosis. While continuing exposure of third generation cephalosporin and carbapenem leads to development of ESBL and CRE microbes in great. The empiric uses of antimicrobials need to be stream lined with local epidemiology and antimicrobial susceptibility pattern. R-PN in childhood leads to RS. In great, bio film formation act as the focus for such recurrences.
  相似文献   

12.
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functional properties of the FimH proteins from Escherichia coli and Klebsiella pneumoniae, which are both 279 amino acids in length but differ by some ∼15% of residues. We show that K. pneumoniae FimH is unable to mediate adhesion in a monomannose-specific manner via terminally exposed Manα(1-2) residues in N-linked oligosaccharides, which are the structural basis of the tropism of E. coli FimH for uroepithelial cells. However, K. pneumoniae FimH can bind to the terminally exposed Manα(1-3)Manβ(1-4)GlcNAcβ1 trisaccharide, though only in a shear-dependent manner, wherein the binding is marginal at low shear force but enhanced sevenfold under increased shear. A single mutation in the K. pneumoniae FimH, S62A, converts the mode of binding from shear dependent to shear independent. This mutation has occurred naturally in the course of endemic circulation of a nosocomial uropathogenic clone and is identical to a pathogenicity-adaptive mutation found in highly virulent uropathogenic strains of E. coli, in which it also eliminates the dependence of E. coli binding on shear. The shear-dependent binding properties of the K. pneumoniae and E. coli FimH proteins are mediated via an allosteric catch bond mechanism. Thus, despite differences in FimH structure and fine receptor specificity, the shear-dependent nature of FimH-mediated adhesion is highly conserved between bacterial species, supporting its remarkable physiological significance.The most common type of adhesive organelle in the Enterobacteriaceae is the type 1 fimbria, which has been most extensively studied in Escherichia coli. The corresponding structures of Klebsiella pneumoniae are similar to those of E. coli with regard to genetic composition and regulation (15). Type 1 fimbriae are composed primarily of the structural subunit FimA, with minor amounts of three ancillary subunits, FimF, FimG, and the mannose-specific adhesin FimH. The FimH adhesin is an allosteric protein that mediates the catch bond mechanism of adhesion where the binding is increased under increased shear stress (48).It has been demonstrated in E. coli that FimH has two domains, the mannose-binding lectin domain (from amino acid [aa] 1 through 156) and the fimbria-incorporating pilin domain (from aa 160 through 279), connected via a 3-aa-long linker chain (6). A mannose-binding site is located at the top of the lectin domain, at the opposite end from the interdomain linker (17).Several studies have demonstrated that type 1 fimbriae play an important role in E. coli urinary tract infection (UTI) (7, 21, 23, 35). In addition, in urinary E. coli isolates, the FimH adhesin accumulates amino acid replacements which increase tropism for the uroepithelium and various components of basement membranes (21, 30, 35, 37, 49). Most of the replacements increase the monomannose binding capability of FimH under low shear, by altering allosteric catch bond properties of the protein (48). The mutated FimH variants were shown to provide an advantage in colonization of the urinary tract in the mouse model (35) and correlate with the overall extraintestinal virulence of E. coli (16). Thus, FimH mutations are pathoadaptive in nature.Klebsiella pneumoniae is recognized as an important opportunistic pathogen frequently causing UTIs, septicemia, or pneumonia in immunocompromised individuals (29). It is responsible for up to 10% of all nosocomial bacterial infections (18, 41). K. pneumoniae is ubiquitous in nature, and it has been shown that environmental isolates are phenotypically indistinguishable from clinical isolates (22, 26, 27, 29, 33). Furthermore, it has been demonstrated that environmental isolates of K. pneumoniae are as virulent as clinical isolates (28, 45).K. pneumoniae possesses a number of known virulence factors, including a pronounced capsule, type 3 fimbriae, and type 1 fimbriae (29, 44). Type 1 fimbriae produced by K. pneumoniae are described as functionally and structurally similar to type 1 fimbriae from E. coli (25) and have been shown to play a significant role in K. pneumoniae UTI (32, 43).We have previously shown that mature FimH from 54 isolates of K. pneumoniae (isolated from urine, blood, liver, and the environment) is represented by seven protein variants due to point amino acid replacements. (42) When K. pneumoniae FimH was aligned with the FimH of E. coli, they showed ∼85% similarity at the amino acid level. Furthermore, a majority (14 out of 21 isolates) of the K. pneumoniae strains isolated from patients with UTI grouped into a single clonal group based on multilocus sequence typing, but fimH in one isolate in the group differed from the others by a single nucleotide mutation resulting in an amino acid change, serine to alanine, in position 62 (42). The same mutation has been found in FimH of a highly uropathogenic clone of E. coli and significantly increases the adhesin''s ability to adhere to monomannose under low or no shear (19, 39, 50).In this study, we describe the extent and pattern of structural variability of the FimH protein from K. pneumoniae and perform comparative analyses of the functional properties of FimH from both K. pneumonae and E. coli.  相似文献   

13.
Biofilms in aquatic ecosystems develop on wet benthic surfaces and are primarily comprised of various allochthonous microorganisms, including bacteria embedded within a self-produced matrix of extracellular polymeric substances (EPS). In such environment, where there is a continuous flow of water, attachment of microbes to surfaces prevents cells being washed out of a suitable habitat with the added benefits of the water flow and the surface itself providing nutrients for growth of attached cells. When watercourses are contaminated with pathogenic bacteria, these can become incorporated into biofilms. This study aimed to isolate and identify the bacterial species within biofilms retrieved from river-stones found in the Porter Brook, Sheffield based on morphological, biochemical characteristics and molecular characteristics, such as 16S rDNA sequence phylogeny analysis. Twenty-two bacterial species were identified. Among these were 10 gram-negative pathogenic bacteria, establishing that potential human pathogens were present within the biofilms. Klebsiella pneumoniae MBB9 isolate showed the greatest ability to form a biofilm using a microtiter plate-based crystal violet assay. Biofilm by K. pneumoniae MBB9 formed rapidly (within 6 h) under static conditions at 37 °C and then increased up to 24 h of incubation before decreasing with further incubation (48 h), whereas the applied shear forces (horizontal orbital shaker; diameter of 25 mm at 150 rpm) had no effect on K. pneumoniae MBB9 biofilm formation.  相似文献   

14.
Significance of Fecal Coliform-Positive Klebsiella   总被引:11,自引:10,他引:1       下载免费PDF全文
A total of 191 Klebsiella pneumoniae isolates of human clinical, bovine mastitis, and a wide variety of environmental sources were tested for fecal coliform (FC) response with the membrane filtration and most probable number techniques. Twenty-seven Escherichia coli cultures of human clinical and environmental origins were also tested. Eighty-five percent (49/58) of known pathogenic K. pneumoniae were FC positive, compared with 16% (19/120) of the environmental strains. E. coli results indicated 93% (13/14) of the clinical and 85% (11/13) of the environmental strains as FC positive. There was no significant difference in the incidence of FC-positive cultures between pathogenic Klebsiella and E. coli. pH measurements of K. pneumoniae and E. coli cultures growing in m-FC broth at 44.5°C revealed three distinct pH ranges correlating with colony morphology. β-Galactosidase assays of Klebsiella and E. coli cultures at 44.5°C indicated all were able to hydrolyze lactose, even if they were FC negative by the membrane filtration or most probable number techniques. The FC response pattern appears stable in K. pneumoniae. Three pathogenic cultures showed no change in FC responses after 270 generations of growth in sterile pulp mill effluent. Since K. pneumoniae is carried in the gastrointestinal tract of humans and animals and 85% of the tested pathogenic strains were FC positive, the isolation of FC-positive Klebsiella organisms from the environment would indicate their fecal or clinical origin or both. The added fact that K. pneumoniae is an opportunistic pathogen of increasing importance makes the occurrence of FC-positive environmental Klebsiella, particularly in large numbers, a potential human and animal health hazard.  相似文献   

15.
Klebsiella pneumoniae is the second leading causative agent of UTI. In this study, a rapid combined polymerase chain reaction and restriction fragment length polymorphism analysis was developed to identify K. pneumoniae in women, infected with urinary tract infection in the Sylhet city of Bangladesh. Analysis of 11 isolates from women at the age range of 20–55 from three different hospitals were done firstly by amplification with K. pneumoniae specific ITS primers. All of the 11 collected isolates were amplified in PCR and showed the expected 136?bp products. Then, restriction fragment length polymorphism analysis of 11 isolates were conducted after PCR amplification by 16s rRNA universal primers, followed by subsequent digestion and incubation with two restriction enzymes, Pst1 and Alu1. Seven out of 11 isolates were digested by Pst1 restriction enzymes, six isolates digested by Alu1, and while others were negative for both enzymes. Data results reveal that, women at age between 25 and 50 were digested by both enzymes. A woman aged over than 50 was negative while bellow 20 was digested by only Pst1. The results could pave the tactic for further research in the detection of K. pneumoniae from UTI infected women.  相似文献   

16.
The Klebsiella pneumoniae genome contains genes for two putative flavin transferase enzymes (ApbE1 and ApbE2) that add FMN to protein Thr residues. ApbE1, but not ApbE2, has a periplasm-addressing signal sequence. The genome also contains genes for three target proteins with the Dxx(s/t)gAT flavinylation motif: two subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), and a 99.5 kDa protein, KPK_2907, with a previously unknown function. We show here that KPK_2907 is an active cytoplasmically-localized fumarate reductase. K. pneumoniae cells with an inactivated kpk_2907 gene lack cytoplasmic fumarate reductase activity, while retaining this activity in the membrane fraction. Complementation of the mutant strain with a kpk_2907-containing plasmid resulted in a complete recovery of cytoplasmic fumarate reductase activity. KPK_2907 produced in Escherichia coli cells contains 1 mol/mol each of covalently bound FMN, noncovalently bound FMN and noncovalently bound FAD. Lesion in the ApbE1 gene in K. pneumoniae resulted in inactive Na+-NQR, but cytoplasmic fumarate reductase activity remained unchanged. On the contrary, lesion in the ApbE2 gene abolished the fumarate reductase but not the Na+-NQR activity. Both activities could be restored by transformation of the ApbE1- or ApbE2-deficient K. pneumoniae strains with plasmids containing the Vibrio cholerae apbE gene with or without the periplasm-directing signal sequence, respectively. Our data thus indicate that ApbE1 and ApbE2 bind FMN to Na+-NQR and fumarate reductase, respectively, and that, contrary to the presently accepted view, the FMN residues are on the periplasmic side of Na+-NQR. A new, “electron loop” mechanism is proposed for Na+-NQR, involving an electroneutral Na+/electron symport. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

17.
18.
Therapeutic options for infections caused by gram-negative organisms expressing plasmid-mediated AmpC β-lactamases are limited because these organisms are usually resistant to all the β-lactam antibiotics, except for cefepime, cefpirome and the carbapenems. These organisms are a major concern in nosocomial infections and should therefore be monitored in surveillance studies. Hence, this study was aimed out to determine the prevalence of plasmid-mediated AmpC β-lactamases in E. coli and K. pneumoniae from a tertiary care in Bangalore. A total of 63 E. coli and 27 K. pneumoniae were collected from a tertiary care hospital in Bangalore from February 2008 to July 2008. The isolates with decreased susceptibility to cefoxitin were subjected to confirmation test with three dimensional extract tests. Minimum inhibitory concentrations (MICs) were determined by agar dilution method. Conjugation experiments, plasmid profiling and susceptibility testing were carried out to investigate the underlying mechanism of resistance. In our study, 52 (57.7%) isolates showed resistance to cefoxitin, the occurrence of AmpC was found to be 7.7% of the total isolates. Plasmid analysis of the selected isolates showed the presence of a single plasmid of 26 kb in E. coli and 2 Kb in K. pneumoniae. Plasmid-mediated AmpC β-lactamases were found in 11.1% of K. pneumoniae and in 6.3% of E. coli. Curing and conjugation experiments showed that resistance to cephamycins and cephalosporins was plasmid-mediated. Our study has demonstrated the occurrence of plasmid-mediated AmpC in E. coli and K. pneumoniae which illustrates the importance of molecular surveillance in tracking AmpC-producing strains at general hospitals and emphasizes the need for epidemiological monitoring.  相似文献   

19.
Aim of the studyThe aerial parts of Thymus kotschyanus Boiss. and Hohen. (Lamiaceae) and flower buds of Dianthus caryophyllus L. (Caryophyllaceae) have been traditionally implemented in the treatment of wounds, throat and gum infections and gastro-intestinal disorder by the indigenous people of northern Iraq, although the compounds responsible for the medicinal properties have not been identified. In this study, antibacterial compounds from both plants were isolated and characterized, and the biological activity of each compound was assessed individually and combined.Materials and methodsCompounds were isolated and characterized from the extracted essential oils of both plants using different spectral techniques: TLC, FTIR spectra and HPLC. The minimum inhibitory concentrations MIC values for the compounds were assessed individually and combined based on a microdilution and the checkerboard method in 96 multi-well microtiter plates.ResultsTwo known compounds were isolated from the essential oils of both plants and were identified as thymol and eugenol. The isolated compounds were investigated for their single and combined antibacterial activities against seven selected pathogenic bacteria; Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Thymol MIC values ranged from 15.6 to 250.0 μg/ml and B. cereus was found to be the most sensitive pathogen with a MIC value of 15.6 μg/ml. Eugenol achieved stronger MIC values against most tested pathogens and the best MIC value (15.6 μg/ml) was observed against B. cereus, L. monocytogenes and K. pneumoniae whereas, S. aureus, P. mirabilis and E. coli were inhibited with a MIC value of 31.2 μg/ml. Combination results had antibacterial enhancement against most pathogens and the best synergistic result was seen against P. mirabilis and E. coli.ConclusionsThe isolation of two antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds validates the use of these species in the treatment of throat and gum infections, wound-healing and gastro-intestinal disorder.  相似文献   

20.
Na+/H+ antiporters are ubiquitous membrane proteins and play a central role in cell homeostasis including pH regulation, osmoregulation, and Na+/Li+ tolerance in bacteria. The microbial communities in extremely hypersaline soil are an important resource for isolating Na+/H+ antiporter genes. A metagenomic library containing 35,700 clones was constructed by using genomic DNA obtained from the hypersaline soil samples of Keke Salt Lake in Northwest of China. Two Na+/H+ antiporters, K1-NhaD, and K2-NhaD belonging to NhaD family, were screened and cloned from this metagenome by complementing the triple mutant Escherichia coli strain KNabc (nhaA , nhaB , chaA ) in medium containing 0.2 M NaCl. K1-NhaD and K2-NhaD have 75.5% identity at the predicted amino acid sequence. K1-NhaD has 78% identity with Na+/H+ antiporter NhaD from Halomonas elongate at the predicted amino acid sequence. The predicted K1-NhaD is a 53.5 kDa protein (487 amino acids) with 13 transmembrane helices. K2-NhaD has 73% identity with Alkalimonas amylolytica NhaD. The predicted K2-NhaD is a 55 kDa protein (495 amino acids) with 12 transmembrane helices. Both K1-NhaD and K2-NhaD could make the triple mutant E. coli KNabc (nhaA , nhaB , chaA) grow in the LBK medium containing 0.2–0.6 M Na+ or with 0.05–0.4 M Li+. Everted membrane vesicles prepared from E. coli KNabc cells carrying K1-NhaD or K2-NhaD exhibited Na+/H+ and Li+/H+ antiporter activities which were pH-dependent with the highest activity at pH 9.5. Little K+/H+ antiporter activity was also detected in vesicles form E. coli KNabc carrying K1-NhaD or K2-NhaD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号