首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daunomycin is a widely used antibiotic of the anthracycline family. In the present study we reveal the structural properties and important intercalator-DNA interactions by means of molecular dynamics. As most of the X-ray structures of DNA-daunomycin intercalated complexes are short hexamers or octamers of DNA with two drug molecules per doublehelix we calculated a self complementary 14-mer oligodeoxyribonucleotide duplex d(CGCGCGATCGCGCG)2 in the B-form with two putative intercalation sites at the 5'-CGA-3' step on both strands. Consequently we are able to look at the structure of a 1:1 complex and exclude crystal packing effects normally encountered in most of the X-ray crystallographic studies conducted so far. We performed different 10 to 20 ns long molecular dynamics simulations of the uncomplexed DNA structure, the DNA-daunomycin complex and a 1:2 complex of DNA-daunomycin where the two intercalator molecules are stacked into the two opposing 5'-CGA-3' steps. Thereby--in contrast to X-ray structures--a comparison of a complex of only one with a complex of two intercalators per doublehelix is possible. The chromophore of daunomycin is intercalated between the 5'-CG-3' bases while the daunosamine sugar moiety is placed in the minor groove. We observe a flexibility of the dihedral angle at the glycosidic bond, leading to three different positions of the ammonium group responsible for important contacts in the minor groove. Furthermore a distinct pattern of BI and BII around the intercalation site is induced and stabilized. This indicates a transfer of changes in the DNA geometry caused by intercalation to the DNA backbone.  相似文献   

2.
Computation of the sterically allowed conformations of peptides   总被引:11,自引:0,他引:11  
  相似文献   

3.
4.
A common approach to protein modeling is to propose a backbone structure based on homology or threading and then to attempt to build side chains onto this backbone. A fast algorithm using the simple criteria of atomic overlap and overall rotamer probability is proposed for this purpose. The method was first tested in the context of exhaustive searches of side chain configuration space in protein cores and was then applied to all side chains in 49 proteins of known structure, using simulated annealing to sample space. The latter procedure obtains the correct rotamer for 57% and the correct χ1 value for 74% of the 6751 residues in the sample. When low-temperature Monte-Carlo simulations are initiated from the results of the simulated-annealing processes, consensus configurations are obtained which exhibit slightly more accurate predictions. The Monte-Carlo procedure also allows converged side chain entropies to be calculated for all residues. These prove to be accurate indicators of prediction reliability. For example, the correct rotamer is obtained for 79% and the correct χ1 value is obtained for 84% of the half of the sample residues exhibiting the lowest entropies. Side chain entropy and predictability are nearly completely uncorrelated with solvent-accessible area. Some precedents for and implications of this observation are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

5.
A study of the conformational parameters of HC-toxin and its diacetyl derivative in chloroform solution has been carried out. Two-dimensional NMR spectroscopy and the nuclear Overhauser effect have been used in order to determine connectivities (assignments and sequence) and approximate torsion angles and interproton distances. The results are consistent with a bis-gamma-turn conformation previously reported for dihydrochlamydocin. Model building based upon NMR data supports a D configuration for Ala2 and Pro4 residues.  相似文献   

6.
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA.  相似文献   

7.
All possible right and left double helical structures which may exist in short fragments as well in polymeric DNA have been obtained on the basis of a developed rigorous and accurate method of conformational analysis of DNA. In polymeric DNA only right regular double helices are possible with preference of B-form that is the main biological form of DNA. In contrast, for short fragments the left and right helices have practically the same energies providing some physical ground for side-by-side form, which biologically is possible as a recombination form and maybe as a replication form.  相似文献   

8.
Mounting spectroscopic evidence indicates that alanine predominantly adopts extended polyproline II (PPII) conformations in short polypeptides. Here we analyze Raman optical activity (ROA) spectra of N-acetylalanine-N′-methylamide (Ala dipeptide) in H2O and D2O using density functional theory on Monte Carlo (MC) sampled geometries to examine the propensity of Ala dipeptide to adopt compact right-handed (αR) and left-handed (αL) helical conformations. The computed ROA spectra based on MC-sampled αR and PPII peptide conformations contain all the key spectral features found in the measured spectra. However, there is no significant similarity between the measured and computed ROA spectra based on the αL- and β-conformations sampled by the MC methods. This analysis suggests that Ala dipeptide populates the αR and PPII conformations but no substantial population of αL- or β-structures, despite sampling αL- and β-structures in our MC simulations. Thus, ROA spectra combined with the theoretical analysis allow us to determine the dominant populated structures. Including explicit solute-solvent interactions in the theoretical analysis is essential for the success of this approach.  相似文献   

9.
10.
Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain–backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions.  相似文献   

11.
Metal-induced sequential transitions among DNA conformations   总被引:1,自引:0,他引:1  
The action of [Co(NH3)6]Cl3 on poly(dGdC) · poly(dGdC) can lead to a series of consecutive reactions, in which B-DNA is first converted to Z-DNA [M. Behe and G. Felsenfeld (1981) Proc. Natl. Acad. Sci USA 78 , 1619–1623], which in turn is transformed into an unidentified conformer that we tentatively call “U”, and finally the highly associated anisotropic ψ-DNA is produced. Conditions are given under which the sequence B ? Z ? “U” ψ(+) can be stopped at any point in the direction from left to right. The reverse processes, from right to left, occur when ψ(+) or “U”-DNA are treated with various amounts of salt concentrations and lowering temperature. Thus it is demonstrated that four conformers of poly(dGdC) · poly(dGdC) are readily interconvertible, and that Z-DNA and “U” conformers are intermediates in the reversible transformations of B- and ψ-DNA.  相似文献   

12.
The geometry of the phosphodiester backbone was analyzed for 7739 dinucleotides from 447 selected crystal structures of naked and complexed DNA. Ten torsion angles of a near-dinucleotide unit have been studied by combining Fourier averaging and clustering. Besides the known variants of the A-, B- and Z-DNA forms, we have also identified combined A + B backbone-deformed conformers, e.g. with α/γ switches, and a few conformers with a syn orientation of bases occurring e.g. in G-quadruplex structures. A plethora of A- and B-like conformers show a close relationship between the A- and B-form double helices. A comparison of the populations of the conformers occurring in naked and complexed DNA has revealed a significant broadening of the DNA conformational space in the complexes, but the conformers still remain within the limits defined by the A- and B- forms. Possible sequence preferences, important for sequence-dependent recognition, have been assessed for the main A and B conformers by means of statistical goodness-of-fit tests. The structural properties of the backbone in quadruplexes, junctions and histone-core particles are discussed in further detail.  相似文献   

13.
Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are believed to contribute to the aging process and to various neurodegenerative diseases. Despite strong observational and experimental evidence, the molecular basis of the deletion process remains obscure. In this study, we test the hypothesis that the primary cause of mtDNA vulnerability to breakage resides in the formation of non-B DNA conformations, namely hairpin, cruciform and cloverleaf-like elements. Using the largest database of human mtDNA deletions built thus far (753 different cases), we show that site-specific breakage hotspots exist in the mtDNA. Furthermore, we discover that the most frequent deletion breakpoints occur within or near predicted structures, a result that is supported by data from transgenic mice with mitochondrial disease. There is also a significant association between the folding energy of an mtDNA region and the number of breakpoints that it harbours. In particular, two clusters of hairpins (near the D-loop 3'-terminus and the L-strand origin of replication) are hotspots for mtDNA breakage. Consistent with our hypothesis, the highest number of 5'- and 3'-breakpoints per base is found in the highly structured tRNA genes. Overall, the data presented in this study suggest that non-B DNA conformations are a key element of the mtDNA deletion process.  相似文献   

14.
Energy minimization techniques are used in conjunction with the results of small molecule crystallographic studies on relevant compounds to propose structural models for photodamaged DNAs. Specifically, we present models both for a DNA molecule containing a psoralen photo-crosslink and for a DNA molecule containing a thymine photodimer. In both models, significant distortions of the nucleic acid helix are observed, including kinking and unwinding at the damage site and numerous changes in the backbone torsion angles relative to their standard conformations. Both the torsion angle geometries and the energetics of the models are presented in detail.  相似文献   

15.
Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function—essential to exert control over all polypeptide degrees of freedom—remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high‐affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root‐mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti‐lysozyme antibodies, complementarity‐determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. Proteins 2015; 83:1385–1406. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Non-B DNA conformations, mutagenesis and disease   总被引:10,自引:0,他引:10  
Recent discoveries have revealed that simple repeating DNA sequences, which are known to adopt non-B DNA conformations (such as triplexes, cruciforms, slipped structures, left-handed Z-DNA and tetraplexes), are mutagenic. The mutagenesis is due to the non-B DNA conformation rather than to the DNA sequence per se in the orthodox right-handed Watson-Crick B-form. The human genetic consequences of these non-B structures are approximately 20 neurological diseases, approximately 50 genomic disorders (caused by gross deletions, inversions, duplications and translocations), and several psychiatric diseases involving polymorphisms in simple repeating sequences. Thus, the convergence of biochemical, genetic and genomic studies has demonstrated a new paradigm implicating the non-B DNA conformations as the mutagenesis specificity determinants, not the sequences as such.  相似文献   

17.
Important chemical and biochemical properties of boranophosphate DNA and RNA oligonucleotides are reviewed. Stereoregular boranophosphate oligomers can be synthesized enzymatically and form stable duplexes with DNA. Fully boronated, non-stereoregular oligothymidylates, synthesized chemically, form hybrids with poly(A) that have lower melting points than oligothymidylate:poly(A), yet they nevertheless can support the RNase H mediated cleavage of RNA.  相似文献   

18.
Kannan S  Zacharias M 《Proteins》2007,66(3):697-706
During replica exchange molecular dynamics (RexMD) simulations, several replicas of a system are simulated at different temperatures in parallel allowing for exchange between replicas at frequent intervals. This technique allows significantly improved sampling of conformational space and is increasingly being used for structure prediction of peptides and proteins. A drawback of the standard temperature RexMD is the rapid increase of the replica number with increasing system size to cover a desired temperature range. In an effort to limit the number of replicas, a new Hamiltonian-RexMD method has been developed that is specifically designed to enhance the sampling of peptide and protein conformations by applying various levels of a backbone biasing potential for each replica run. The biasing potential lowers the barrier for backbone dihedral transitions and promotes enhanced peptide backbone transitions along the replica coordinate. The application on several peptide cases including in all cases explicit solvent indicates significantly improved conformational sampling when compared with standard MD simulations. This was achieved with a very modest number of 5-7 replicas for each simulation system making it ideally suited for peptide and protein folding simulations as well as refinement of protein model structures in the presence of explicit solvent.  相似文献   

19.
Human DNase I is an endonuclease that catalyzes the hydrolysis of double-stranded DNA predominantly by a single-stranded nicking mechanism under physiological conditions in the presence of divalent Mg and Ca cations. It binds to the minor groove and the backbone phosphate group and has no contact with the major groove of the right-handed DNA duplex. The aim of this study was to examine the effects of DNase I - DNA complexation on DNA and protein conformations.We monitored the interaction of DNA with DNase I under physiological conditions in the absence of Mg2+, with a constant DNA concentration (12.5 mmol/L; phosphate) and various protein concentrations (10-250 micromol/L). We used Fourier transfrom infrared, UV-visible, and circular dichroism spectroscopic methods to determine the protein binding mode, binding constant, and effects of polynucleotide-enzyme interactions on both DNA and protein conformations. Structural analyses showed major DNase-PO2 binding and minor groove interaction, with an overall binding constant, K, of 5.7 x 10(5) +/- 0.78 x 10(5) (mol/L)-1. We found that the DNase I - DNA interaction altered protein secondary structure, with a major reduction in alpha helix and an increase in beta sheet and random structures, and that a partial B-to-A DNA conformational change occurred. No DNA digestion was observed upon protein-DNA complexation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号