首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins of Gram-negative bacteria are key molecules that interface the cells with the environment. Despite recent proteomic identification of numerous oligomer proteins in the Escherichia coli cell envelope, the protein complex of E. coli membrane proteins and their peripherally associated proteins remain ill-defined. In the current study, we systematically analyze the subproteome of E. coli cell envelope enriched in sarcosine-insoluble fraction (SIF) and sarcosine-soluble fraction (SSF) by using proteomic methodologies. One hundred and four proteins out of 184 spots on 2D electrophoresis gels are identified, which includes 31 outer membrane proteins (OMPs). Importantly, our further proteomic studies reveal a number of previously unrecognized membrane-interacting protein complexes, such as the complex consisting of OmpW and fumarate reductase. This established complete proteomic profile of E. coli envelope also sheds new insight into the function(s) of E. coli outer envelope.  相似文献   

2.
A two-dimensional electrophoretic analysis of protein distribution followed by identification of selected proteins by mass spectrometry was performed on fresh bdellovibrio cultures containing attack phase cells of the predatory bacterium Bdellovibrio bacteriovorus strain 109J-1 and the remains of an Escherichia coli or a Pseudomonas syringae pv. tomato prey. Cleavage of the peptidoglycan-associated outer membrane proteins (OMPs) OmpA in E. coli and OprF in P. syringae occurred in both prey. The tryptic peptides obtained from the cleavage products of OmpA and OprF were all located within the 19-kDa pronase-resistant N-terminal parts of the corresponding proteins. The predator cell fraction was separated from the prey ghosts in fresh bdellovibrio cultures by centrifugation on a Percoll-sucrose cushion. Proteins from each fraction were separated by two-dimensional electrophoresis and identified by mass spectrometric analysis. As no prey OMP could be detected in the predator cell fraction, it was concluded that prey OMPs are not transferred to the predator, as had been suggested previously. However, a protein from the predator was found bound to ghost cell envelopes. This protein may correspond to a protein earlier suggested to be associated with the prey outer or cytoplasmic membranes. Along with recently described polypeptides from B. bacteriovorus strains 100 and 114, it forms a new family of putative outer membrane proteins.  相似文献   

3.
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting β-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP () predicted 43 β-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8–3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins (). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.  相似文献   

4.
The folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria into lipid bilayers has been studied using OmpA of E. coli and FomA of F. nucleatum as examples. Both, OmpA and FomA are soluble in unfolded form in urea and insert and fold into phospholipid bilayers upon strong dilution of the denaturant urea. OmpA is a structural protein and forms a small ion channel, composed of an 8-stranded transmembrane beta-barrel domain. FomA is a voltage-dependent porin, predicted to form a 14 stranded beta-barrel. Both OMPs fold into a range of model membranes of very different phospholipid compositions. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers that demonstrated a highly synchronized mechanism of secondary and tertiary structure formation of beta-barrel membrane proteins. A study on FomA folding into lipid bilayers indicated the presence of parallel folding pathways for OMPs with larger transmembrane beta-barrels.  相似文献   

5.
The transposon Tn10-encoded tetracycline resistance protein TetA is an integral membrane protein responsible for the export of tetracycline from the cytoplasmic to the periplasmic side of the inner membrane of Gram-negative bacteria. From a plot of the average hydrophobicity along the sequence of this protein, a two-dimensional membrane topology with 12 transmembrane domains may be predicted. Using plasmid-bearing Escherichia coli maxicells we specifically radiolabeled the TetA protein. The amino terminus of this membrane protein was shown not to be processed, and its location on the inner side of the cytoplasmic membrane was demonstrated by a newly developed use of a chemical method. Spheroplasts and inside-out vesicles of the TetA protein synthesizing maxicells were subjected to limited digestion by proteases of different specificities. The TetA protein was not accessible to proteases from the periplasmic side. On the inner side of the cytoplasmic membrane, the carboxyl terminus and four sites accessible to endoproteases could be identified. The cleavage sites are proposed to be localized between amino acid residues 60-70, 110-130, 180-200, and at amino acid 327. These results allow the definition of a model for the two-dimensional topology of the TetA protein.  相似文献   

6.
Y Akiyama  K Ito 《The EMBO journal》1985,4(12):3351-3356
The product of the secY (prlA) gene (the SecY protein) involved in protein export in Escherichia coli was overproduced and localized in the cytoplasmic (inner) membrane. Because of its strong interaction with a non-ionic detergent (NP40), it partitioned into the detergent layer during electroblotting through a NP40-containing gel (detergent blotting), and it formed a horizontal streak in the O'Farrell two-dimensional gel electrophoretic system. Consequently, we developed an alternative two-dimensional gel procedure, which proved useful for analysis of integral membrane proteins, especially in combination with detergent blotting. SDS-gel electrophoresis was carried out successively through gels of lower (first dimension) and higher (second dimension) sieving effects. Many membrane proteins, unlike soluble proteins, formed spots off and above the diagonal line, and all of these spots partitioned exclusively into the detergent layer. A characteristic pattern of integral membrane proteins of E. coli was thus obtained and the spot of the SecY protein in the cytoplasmic membrane was identified even when it was not overproduced. These results show that the gene secY specifies an integral membrane component of the protein export machinery.  相似文献   

7.
β-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.  相似文献   

8.
Helicobacter pylori causes gastroduodenal disease, which is mediated in part by its outer membrane proteins (OMPs). To identify OMPs of H. pylori strain 26695, we performed a proteomic analysis. A sarcosine-insoluble outer membrane fraction was resolved by two-dimensional electrophoresis with immobilized pH gradient strips. Most of the protein spots, with molecular masses of 10 to 100 kDa, were visible on the gel in the alkaline pI regions (6.0 to 10.0). The proteome of the OMPs was analyzed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Of the 80 protein spots processed, 62 spots were identified; they represented 35 genes, including 16 kinds of OMP. Moreover, we identified 9 immunoreactive proteins by immunoblot analysis. This study contributes to the characterization of the H. pylori strain 26695 proteome and may help to further elucidate the biological function of H. pylori OMPs and the pathogenesis of H. pylori infection.  相似文献   

9.
细菌外膜蛋白与细菌对异丙醇耐受关系密切,但迄今为止尚未见相关研究.本文首先采用基于双向电泳(two dimensional electrophoresis,2-DE)的蛋白质组学技术,研究E.coli K-12 BW25113在有无异丙醇条件下外膜蛋白表达的差异.结果发现,外膜蛋白LamB、FadL和OmpC以及OmpT、Tsx、OmpA和OmpF在异丙醇应激条件下表达量分别上调和下调.然后通过基因敲除、补救和高表达等功能基因组学的方法,探讨这些功能外膜蛋白在异丙醇应激耐受中所起的作用,发现LamB、OmpA和OmpC在E.coli K-12 BW25113对异丙醇耐受过程中起到更重要的作用.最后,对EnvZ/OmpR双组分信号转导系统在对异丙醇耐受中的作用进行了研究,证实EnvZ/OmpR双组分信号转导系统确实参与细菌对异丙醇的耐受.因此,外膜蛋白的改变和EnvZ/OmpR双组分信号转导系统的调节是革兰氏阴性细菌对异丙醇耐受的一种重要机制。  相似文献   

10.
Thiobacillus ferrooxidans is a Gram-negative chemolithotrophic bacterium able to oxidize ferrous iron, elemental sulfur and inorganic sulfur compounds. The oxidation of sulfur by T. ferrooxidans resulted in an expression of some outer membrane proteins (OMPs) at a level higher than that observed during ferrous iron oxidation. Among these OMPs, a protein with a molecular mass of 54 kDa was purified and 18 amino acids of the N-terminal sequence determined. Using a 54 bp PCR generated DNA product as a probe for the protein, we isolated a 4.5 kb Pst I DNA chromosomal fragment containing the corresponding gene. Sequencing 2169 bp of this fragment revealed the open reading frame codifying for the protein, consisting of 467 amino acids and a molecular mass of 49,674 Da. The mature protein was produced by the removal of a 32 amino acid signal peptide-like sequence from the N-terminus of a 499 amino acid peptide. Although no significant homology with any known protein has been found and its physiological role remains unclear, its high expression on sulfur substrates suggests a role in sulfide mineral oxidation.  相似文献   

11.
12.
Proteomic analysis of the cell envelope fraction of Escherichia coli   总被引:4,自引:0,他引:4  
We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.  相似文献   

13.
Brucella, an aerobic, nonsporeforming, nonmotile Gram-negative coccobacillus, is a NIH/CDC category B bioterror threat agent that causes incapacitating human illness. Medical defense against the bioterror threat posed by Brucella would be strengthened by development of a human vaccine and improved diagnostic tests. Central to advancement of these goals is discovery of bacterial constituents that are immunogenic or antigenic for humans. Outer membrane proteins (OMPs) are particularly attractive for this purpose. In this study, we cloned, expressed, and purified seven predicted OMPs of Brucella suis. The recombinant proteins were fused with 6-His and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based on their ORF sequences and directly cloned into an entry vector. The recombinant entry constructs were propagated in TOP 10 cells, recombined into a destination vector, pET-DEST42, then transformed into Escherichia coli BL21 cells for IPTG-induced protein expression. The expressed recombinant proteins were confirmed with Western blot analysis using anti-6-His antibody conjugated with alkaline phosphatase. These B. suis OMPs were captured and purified using a HisGrab plate. The purified recombinant proteins were examined for their binding activity with antiserum. Serum derived from a rabbit immunized intramuscularly with dialyzed cell lysate of Brucella rough mutant WRR51. The OMPs were screened using the rabbit antiserum and purified IgG. The results suggested that recombinant B. suis OMPs were successfully cloned, expressed and purified. Some of the expressed OMPs showed high binding activity with immunized rabbit antiserum.  相似文献   

14.
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia’s OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.  相似文献   

15.
Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.  相似文献   

16.
链霉菌是一类具有重要工业价值和复杂调控机制的微生物,天蓝色链霉菌是这个属的模式菌。已报道天蓝色链霉菌的蛋白组学的研究多采用二维聚丙烯酰胺凝胶电泳与基质辅助激光解吸电离飞行时间质谱相结合的方法,但由于膜蛋白疏水性较强,天然丰度较低,此法得到的膜蛋白很少。用蛋白酶K保护/高pH蛋白酶K法制备链霉菌膜内侧蛋白组样品,并用多维蛋白鉴别技术进行分析,得到154个可能的膜内侧蛋白(包括膜内在蛋白和膜外周蛋白),其中含跨膜区的膜内在蛋白44个,含3个以上跨膜区的膜内在蛋白有23个。此外,还鉴定了一批膜内侧蛋白的亲水性肽段及其在膜上的拓扑位置。该结果有助于对天蓝色链霉菌的膜蛋白进行拓扑学分类和功能研究。  相似文献   

17.
Outer membrane proteins (OMPs) of Gram-negative bacteria have diverse functions and are directly involved in the interaction with various environments encountered by pathogenic organisms. Thus, OMPs represent important virulence factors and play essential roles in bacterial adaptation to host niches, which are usually hostile to invading pathogens. Understanding the structure and functions of bacterial OMPs will facilitate the design of antimicrobial drugs and vaccines. In this paper, we will present a brief review on OMPs that contribute to bacterial adaptive responses including iron uptake, antimicrobial peptide resistance, serum resistance, and drug/bile resistance.  相似文献   

18.
Proteins translocated across the single plasma membrane of mycoplasmas (class Mollicutes) represent important components likely to affect several interactions of these wall-less microbes with their respective hosts. However, identification and functional analysis of such proteins is hampered by the lack of mutational systems in mycoplasmas and by a perceived limitation in translating recombinant mycoplasma genes containing UGA (Trp) codons in other eubacteria. Here we directly analyze a gene encoding a Mycoplasma hyorhinis protein capable of promoting its membrane translocation. It was initially detected by screening a recombinant phage genomic library with antibody from a host with M. hyorhinis-induced arthritis and was localized by Tn5 and deletion mutations affecting expression of antigenic translational products. Sequence analysis of the isolated gene predicted a hydrophilic protein, P101, containing three UGA codons and a putative signal peptide with an uncharacteristic cluster of positively charged amino acids near its C terminus. Nevertheless, lambda::TnphoA transposon mutagenesis of an Escherichia coli plasmid bearing the p101 gene resulted in p101::TnphoA fusions expressing products that could translocate as much as 48 kDa of the P101 sequence (up to the first UGA codon) across the E. coli plasma membrane. Fusion proteins containing mature P101 sequences expressed mycoplasma epitopes and were found by cell fractionation and detergent phase partitioning to be integral membrane proteins in E. coli, suggesting a lack of signal peptide cleavage in this system. Importantly, identification of P101 by direct analysis of its export function relied neither on prior identification of the mycoplasmal product nor on complete expression of the product from the cloned mycoplasma gene.  相似文献   

19.
The expression of cloned bacteriophage phi X174 lysis gene E was analyzed in minicells of Escherichia coli using two-dimensional gel electrophoresis. Beside the 10-11-kDa protein-E, at least two additional protein bands were detected, associated with the inner membrane, which showed the same isoelectric point as E. To clarify whether these proteins were E-specific, two different antibodies directed against a beta-galactosidase-E' hybrid protein and a synthetic oligopeptide corresponding to the C-terminal end of protein-E were raised. Immunoadsorption studies with anti-peptide-specific antibodies resulted in the detection of protein-E as well as in the detection of proteins of higher molecular weight. Two of these protein bands were positively recognized by anti beta-galactosidase-E' antibodies. The latter protein bands had the same molecular weight as the putative protein-E bands detected by two-dimensional gel electrophoresis indicating that these bands represent protein-E-specific oligomers. These data support the idea that an E-specific oligomeric structure penetrating the inner and outer membrane of E. coli is formed during the lytic action of protein-E.  相似文献   

20.
Regulation of gene expression in response to local iron concentration is commonly observed in bacterial pathogens that face this nutrient limitation during host infection. In this study, a proteomic approach was used to analyze the differential protein expression of Bordetella pertussis under iron limitation. Whole cell lysates (WCL) and outer membrane fractions of bacteria grown either under iron-starvation or iron-excess conditions were analyzed by two-dimensional (2-D) gel electrophoresis. Statistical analysis revealed 36 proteins displaying differential expression, 9 with higher expression under iron-excess and 27 with increased expression under iron-starvation. These proteins were subjected to tryptic digestion and MALDI-TOF MS. Apart from those previously reported, we identified new low-iron-induced proteins that might help to explain the increased virulence of this phenotype. Additionally, we found evidence that at least one of the identified proteins, solely expressed under iron starvation, is highly immunogenic in infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号