首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This investigation examined the effects of Streptozotocin diabetes in pregnancy on several parameters of glucocorticoid action in the rat placenta. Pregnant diabetic rats showed reduced body weight, increased adrenal weight and serum corticosterone concentrations. Glucocorticoid receptors in placental cytosol of labyrinthine zone, measured in the absence of MoO4Na2 were similar in control and diabetic rats, but after addition of MoO4Na2 receptor number were moderately, but significantly reduced in diabetic placentas (P less than 0.01). No changes in affinity were detected in saturation analysis. Furthermore, transformation of the receptor assessed by its capacity for binding to DNA-cellulose, was enhanced in diabetic animals, suggesting increased efficiency of the receptor-bound hormone. Since the function of the glucocorticoid receptor of rat placenta may be the inhibition of local progesterone production (Heller and De Nicola, J. steroid Biochem. 19 (1983) 1339-1343), we determined progesterone synthesis in vitro and found that diabetic placentas synthesized significantly less progesterone than control tissue (P less than 0.05). Lastly, we found that the metabolism of corticosterone to 11-dehydrocorticosterone, while declining in control placentas as pregnancy advanced, it was sustained in diabetic pregnancy. It is suggested that diabetic rat placentas showed increased activity towards the glucocorticoid receptor, resulting in reduction in progesterone synthesis and sustained catabolism of corticosterone. The latter may possibly constitute a compensatory mechanism to protect the fetal compartment from high levels of maternal glucocorticoids.  相似文献   

2.
The maternal serum concentrations of human chorionic gonadotropin, pregnancy-specific beta-l-glycoprotein, placental lactogen, progesterone, 17-hydroxyprogesterone, estradiol and estriol were measured in 13 women who smoked marijuana regularly throughout pregnancy. Cannabinoid use in these women was confirmed by RIA measurements of their sum Δ 9- tetrahydrocannabinol (THC) concentrations. These THC using women were matched within 2 12 weeks of gestational age with 13 pregnant non-THC using controls drawn from the same population. Placental protein and steroid hormone concentrations were within established normal ranges for gestational age and there were no significant differences between the groups in the concentrations of any of the protein and steroids measured. In addition, no significant differences between THC users were found following linear regression analysis of placental hormone concentrations as a function of gestational age. Thus, this study suggests that marijuana use during pregnancy does not significantly alter the circulating maternal concentrations of trophoblastic protein hormones or major fetoplacental steroid hormones.  相似文献   

3.
Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: firstly, maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and secondly, maternal blood surrounding the syncytiotrophoblast (SYN). Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental SYN evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen.  相似文献   

4.
1.) Total renin, active renin, prorenin, angiotensin II, estradiol and progesterone were measured in maternal, placental and fetal blood and in trophoblastic and uterine tissues of the guinea pig. Furthermore, membrane angiotensin II receptors were measured in trophoblastic tissues. 2.) Blood and tissue concentrations of total renin, active renin, angiotensin II and steroids are shown to increase with gestational age. At the full term of pregnancy (70th post-coital day), tissue concentrations of total renin in chorion (23,900 +/- 2,752 ng/g of tissue/h), maternal placenta (14,210 +/- 1,131), fetal placenta (12,475 +/- 927) and uterus (7,677 +/- 798) are 100 time higher than those observed in placental, fetal and maternal blood. Distribution of blood and tissue prorenin (inactive renin) is similar to that found for total renin. Active renin/Total renin ratio reaches 1% in uterine, placental and chorion tissues and 9.3 +/- 1.0% in maternal, placental and fetal blood. 3.) Angiotensin II levels in systemic maternal blood (690 +/- 99 pg/ml) and in uterine blood (467 +/- 84) are higher than those found in placental blood (266 +/- 39) and in different trophoblastic tissues (between 200 and 400 pg/g). Angiotensin II receptor concentrations are highest in chorion. 4.) Regarding the steroid hormones, it is noted that placental and maternal blood contain more progesterone than trophoblastic tissues. The highest concentrations of estradiol are found in chorion tissue and uterine blood. 5.) A positive correlation is observed between angiotensin II and estradiol in uterine blood (r = 0.69, P less than 0.01) and in chorion (r = 0.71, P less than 0.01). These findings indicate that angiotensin II and estradiol could, by their interactions, play an important role in the physiology of pregnancy.  相似文献   

5.
Human placenta produces a large variety of bioactive substances with endocrine and neural competence: pituitary and gonadal hormones, hypothalamic-like releasing or inhibiting hormones, growth factors, cytokines and neuropeptides. The most recent findings indicate that locally produced hormones regulate the secretion of other placental hormones supporting a paracrine/autocrine regulation. In placental endocrinology, a particular relevance is played by steroid hormones. In fact, a specific gonadotropin-releasing hormone (GnRH)-human chorionic gonadotropin (hCG) regulation of placental steroidogenesis has been proposed as a placental internal regulatory system acting on steroids production from human placenta. In addition, activin and inhibin have been proposed as further regulatory substances of the synthesis and secretion of steroids; the addition of activin A to placental culture augments GnRH, hCG and progesterone, and this effect can be significantly reduced by the addition of inhibins. Finally, a steroid-steroid interaction is suggested by the evidence that placental estrogen has a positive role in the regulation of progesterone biosynthesis. Other steroid-protein interactions have been observed in human placenta. In fact, recent data indicate that progesterone inhibits placental corticotropin-releasing factor (CRF) and estrogens act on placental conversion of cortisol to cortisone, activating cortisol secretion by the fetal adrenal and enhancing fetal adrenal function with advancing gestation.  相似文献   

6.
The chorioallantoic placenta is an organ of gaseous exchange that exhibits a high degree of structural diversity. One factor determining oxygen transfer across the placenta, the diffusion distance, is in part dependent on the number of cell layers separating maternal from fetal blood. This interhaemal barrier occurs in three principal variants. The focus of this review is on determining how the barrier evolved in placental mammals. The analysis was based on current knowledge of placental structure, as far as possible using ultrastructural data, and on current views about the evolution of placental mammals, derived from molecular phylogenetics. We show that epitheliochorial placentation, the least invasive type, is a derived state and discuss factors that may have determined its evolution with reference to conflict theory, as applied to the allocation of resources between mother and fetus. It is not yet possible to determine which of the two more invasive types of placentation occurred in the last common ancestor of crown placentals. Depending on tree topology and taxon sampling, the result achieved is either endotheliochorial, haemochorial or unresolved. Finally we discuss other factors important to placental gas exchange and point to physiological variables that might become amenable to phylogenetic analysis.  相似文献   

7.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

8.
Placental hormones are produced by one genetic individual (the fetus) to act on the receptors of another genetic individual (the mother). Mothers are probably able to extract some information from placental hormones, but this information may be limited to a crude measure of fetal vigor. Placental hormones are most easily interpreted as fetal attempts to manipulate maternal metabolism for fetal benefit. An evolutionary model is presented for a hypothetical hormone that increases the nutrient content of maternal blood. The model predicts that, at an evolutionary equilibrium, the hormone will be produced solely by the mother or solely by the placenta, but not by both. If the gene for the hormone is subject to genomic imprinting, the paternally-derived allele will be active and the maternally-derived allele will be silent. Hormone production benefits the members of the mother's current litter at some cost to future litters. Therefore, paternity changes between litters increase the level of hormone production. On the other hand, offspring that produce less of the hormone than litter-mates share the benefits but have lower costs. Therefore, multiple paternity within litters reduces the level of hormone production.  相似文献   

9.
Placental essential fatty acid transport and prostaglandin synthesis   总被引:3,自引:0,他引:3  
The studies reported here demonstrate two important aspects of placenta EFA transport and metabolism. (1) A mechanism exists within the placenta for the selective incorporation of 20:4 omega 6 into phosphoglycerides and the export of those phosphoglycerides to the fetal circulation. This mechanism allows the selective sequestering of 20:4 omega 6 in the fetoplacental unit and may provide the fetus with important performed structural membrane components. (2) Placental PG synthesis is directed mostly to the maternal circulation and stimulated placental PG synthesis is directed totally to the maternal circulation. This mechanism may protect the fetus from fluctuations in maternal and placental PG synthesis and may direct stimulated placental PG synthesis to a target organ, the myometrium. The perfused human placental model provides a valuable method for the study of a variety of biochemical phenomena in a whole human organ and its use may further elucidate the role of this tissue in the maintenance of pregnancy, the transport of EFA to the developing fetus and the involvement of placental PG synthesis in fetal development and parturition.  相似文献   

10.
To study the effects of dehydroepiandrosterone sulfate (DHA-S) on placental steroid metabolism and maternal steroidal profiles at term, the following in vivo and in vitro experiments were performed. Two hundred mg of DHA-S was given to five pregnant women 30 minutes prior to delivery. After delivery, the placenta was collected and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and sulfatase activity was determined by measuring the rate of conversion of pregnenolone to progesterone and DHA-S to DHA. The amount of C21-delta 4-steroid in the placental tissue was measured by gas chromatography mass spectrometry (GC-MS) and compared with the control groups. The maternal serum concentration of several steroids was also measured by GC-MS before and after the administration of DHA-S. 3 beta-HSD activity in the placentae from the mothers who received DHA-S before delivery was significantly lower than in the controls. On the other hand, no significant change was observed in the activity of sulfatase. The serum concentration of progesterone (P) and 20 alpha-dihydro-P (20-P) before DHA-S loading decreased following the administration whereas estradiol (E), DHA, and androstenedione (A) levels increased. To study the direct effect of DHA-S and its related steroids on placental 3 beta-HSD activity, placental tissue samples were incubated with pregnenolone in vitro. Several other steroids were added simultaneously into the medium. It was observed that placental 3 beta-HSD activity was directly inhibited by DHA-S. These results indicate that DHA-S inhibits 3 beta-HSD activity in the placenta and subsequently causes a reduction in P and 20-P.  相似文献   

11.
Glutamine plays a vital role in fetal carbon and nitrogen metabolism and exhibits the highest fetal:maternal plasma ratio among all amino acids in pigs. Such disparate glutamine levels between mother and fetus suggest that glutamine may be actively synthesized and released into the fetal circulation by the porcine placenta. We hypothesized that branched-chain amino acid (BCAA) metabolism in the placenta plays an important role in placental glutamine synthesis. This hypothesis was tested by studying conceptuses from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, or 110 of gestation (n = 6 per day). Placental tissue was analyzed for amino acid concentrations, BCAA transport, BCAA degradation, and glutamine synthesis as well as the activities of related enzymes (including BCAA transaminase, branched-chain alpha-ketoacid dehydrogenase, glutamine synthetase, glutamate-pyruvate transaminase, and glutaminase). On all days of gestation, rates of BCAA transamination were much greater than rates of branched-chain alpha-ketoacid decarboxylation. The glutamate generated from BCAA transamination was primarily directed to glutamine synthesis and, to a much lesser extent, alanine production. Placental BCAA transport, BCAA transamination, glutamine synthesis, and activities of related enzymes increased markedly between Days 20 and 40 of gestation, as did glutamine in fetal allantoic fluid. Accordingly, placental BCAA levels decreased after Day 20 of gestation in association with a marked increase in BCAA catabolism and concentrations of glutamine. There was no detectable catabolism of glutamine in pig placenta throughout pregnancy, which would ensure maximum output of glutamine by this tissue. These novel results demonstrate glutamine synthesis from BCAAs in pig placentae, aid in explaining the abundance of glutamine in the fetus, and provide valuable insight into the dynamic role of the placenta in fetal metabolism and nutrition.  相似文献   

12.
The binding of 3H-corticosterone and 3H-11-dehydrocorticosterone to receptors in cytosol and nucleus was examined in fetal mouse brain and placenta using Sephadex gel filtration or charcoal to separate bound and unbound steroid. In the cytosol, competitive displacement of each steroid by the other was observed. The binding was unaffected by RNase, DNase, dithiothreitol or N-ethyl maleimide but was diminished by Pronase. Nuclei were isolated by hypotonic shock using dilute MgCl2 and the steroid receptor-complexes of both steroids were obtained from the nuclear sap. Receptor-complexes of both steroids were observed in brain and placental tissues. Competitive displacement of each steroid by the other was also observed in nuclear binding. Both 11-dehydrocorticosterone and 11-deoxycorticosterone bound to a chromatin fraction as did the hormone corticosterone. Identity of the steroids was established by using chromatography and co-crystallization techniques. This work raises the possibility that in the fetal mouse, 11-dehydrocorticosterone, previously considered biologically inactive and an abundant metabolite in fetal mouse tissues, may in fact play a more positive role in regulation.  相似文献   

13.
Throughout the second and third trimesters, the human placenta (and the placenta in other anthropoid primates) produces substantial quantities of corticotropin-releasing hormone (placental CRH), most of which is secreted into the maternal bloodstream. During pregnancy, CRH concentrations rise over 1000-fold. The advantages that led selection to favour placental CRH production and secretion are not yet fully understood. Placental CRH stimulates the production of maternal adrenocorticotropin hormone (ACTH) and cortisol, leading to substantial increases in maternal serum cortisol levels during the third trimester. These effects are puzzling in light of widespread theory that cortisol has harmful effects on the fetus. The maternal hypothalamic-pituitary-adrenal (HPA) axis becomes less sensitive to cortisol during pregnancy, purportedly to protect the fetus from cortisol exposure. Researchers, then, have often looked for beneficial effects of placental CRH that involve receptors outside the HPA system, such as the uterine myometrium (e.g. the placental clock hypothesis). An alternative view is proposed here: the beneficial effect of placental CRH to the fetus lies in the fact that it does stimulate the production of cortisol, which, in turn, leads to greater concentrations of glucose in the maternal bloodstream available for fetal consumption. In this view, maternal HPA insensitivity to placental CRH likely reflects counter-adaptation, as the optimal rate of cortisol production for the fetus exceeds that for the mother. Evidence pertaining to this proposal is reviewed.  相似文献   

14.
Ovarian and placental steroids are essential for the maintenance of pregnancy. In some mammals it is evident that the placenta is responsible for the production of steroids. However, in the domestic cat, steroid secretion from the placenta has not yet been elucidated. Our study aimed to find out whether feline placentae are able to produce steroids. Placentae from different pregnancy stages were analyzed for mRNA expression of five steroidogenic enzymes (HSD3B1, CYP11A1, CYP17A1, HSD17B1 and CYP19A1) and for tissue concentrations of progesterone and estradiol. Steroidogenic enzymes responsible for the final steps of estradiol (CYP19A1) and progesterone synthesis (HSD3B) were expressed at very high levels and followed almost the same pattern over pregnancy as the intraplacental hormones themselves. By contrast, the other enzymes were found in very low quantities suggesting that biosynthesis occurs via extra-placental steroid precursors. The plasma steroid profiles measured by other groups differ from the placental hormone courses determined by us; therefore we conclude that the feline placenta can produce progesterone and estradiol.  相似文献   

15.
Mothers and fetuses are expected to be in some degree of conflict over the allocation of maternal resources to fetal growth in the intrauterine environment. Variation in placental structure and function may be one way a fetus can communicate need and quality to its mother, potentially manipulating maternal investment in its favor. Whereas common marmosets typically produce twin litters, they regularly give birth to triplet litters in captivity. The addition of another fetus is a potential drain on maternal resource availability and thus a source of elevated conflict over resource allocation. Marmoset littermates share a single placental mass, so that differences in the ratio of fetal to placental weight across litter categories suggest the presence of differential intrauterine strategies of resource allocation. The fetal/placental weight ratio was calculated for 26 marmoset pregnancies, representing both twin and triplet litters, to test the hypothesis that triplet fetuses respond to intrauterine conflict by soliciting placental overgrowth as a means of accessing maternal resources. In fact, relative to fetal mass, the triplet marmoset placenta is significantly undergrown, with individual triplets associated with less placental mass than their twin counterparts, suggesting that the triplet placenta is relatively more efficient in its support of fetal growth. There still may be an important role for maternal-fetal conflict in the programming of placental structure and function. Placental adaptations that solicit potential increases of maternal investment may occur at the microscopic or metabolic level, and thus may not be reflected in the size of the placenta as a whole.  相似文献   

16.
The reptilian placenta is a composite structure formed by a functional interaction between extraembryonic membranes and the maternal uterus. Study of placental structure of squamate reptiles over the past century has established that each of the multiple independent origins of placentation, which characterize the reproductive diversity of squamates, has resulted from the evolutionary transformation of these homologous structures. Because each evolutionary transformation is an independent novel relationship between maternal and embryonic tissues, the resulting placentae are not homologous, even though the individual components may be. The evolution of reptilian placentation should reveal much about evolutionary patterns and mechanisms because similar structural-functional systems have been transformed along parallel trajectories on multiple occasions. We compared extraembryonic membrane and placental development and pattern of embryonic nutrition in thamnophiine snakes and Pseudemoia lizards in the context of recent hypotheses of phylogenetic relationships. Two primary types of placentation, chorioallantoic and yolk sac, evolved in each lineage. Smooth, highly vascular regions of chorioallantoic placentation are indistinguishable homoplasies that evolved in parallel, likely to facilitate respiratory exchange. The yolk sac placenta of each lineage is specialized for histotrophic nutrient transfer, yet composition of these structures differs because of variation in the ancestral snakes and lizards. In addition, the omphalopleure that contributes to yolk sac placentation persists to later embryonic stages compared to oviparous outgroups, but the two lineages have evolved different structures that prevent replacement of the omphalopleure by the allantois. Each lineage has also evolved unique structural specializations of the chorioallantoic placenta.  相似文献   

17.
Mammalian pregnancy requires specific interactions between the conceptus and its mother that involve the endocrine system and adhesion molecules. The relation between adhesion molecules and their ligands at the fetal–maternal interface is crucial for developing a successful implantation. Progesterone (P4) and estrogen (E2) secreted by the porcine conceptus are required for the relation to be established. We investigated the expression of αvβ3 integrin and its ligand, fibronectin (FN), at the placental interface, and E2 and P4 concentrations in both serum and maternal and fetal placental extracts during placentation in swine. Placental and serum samples of crossbred sows at 17, 30, 60, 70, and 114 days gestation and no pregnant uteri were used. The presence of αvβ3 and FN were determined by immunohistochemistry, and E2 and P4 by chemiluminescence in homogenates of nonpregnant uterus (HoU), swine maternal placenta (HoPM), swine fetal placenta (HoPF) and serum. The expression of αvβ3 and FN increased at the interface at 17, 30 and 60 days gestation. Immunostaining decreased by 70 days. Serum E2 levels peaked at 17 days, then decreased, then increased again near term. The highest concentration of P4 occurred in HoPF at 70 days gestation, then decreased coincident with a decline in integrin and FN expression at the placental interface. High P4 levels during swine gestation may regulate the expression of αvβ3 integrin and FN at the placental interface for up to 70 days gestation. Other adhesion molecules and their ligands likely maintain the fetal–placental interface after 70 days.  相似文献   

18.
Gonadotropin releasing hormone has been located and found to be secreted by the human placenta in culture. Addition of the releasing hormone upto 1μg concentration in the placental cultures brings about stimulation of chorionic gonadotropin and progesterone secretion. Higher amounts of the decapeptide has an inhibitory influence on both the gonadotropin and the steroid production. The action of the releasing hormone on the placenta could be blocked by the anti-luteinizing hormone releasing hormone monoclonal antibodies indicating a possible site of action of the antibodies for control of fertility  相似文献   

19.
In this review, we focused on the intersection between steroid metabolomics, obstetrics and steroid neurophysiology to give a comprehensive insight into the role of sex hormones and neuroactive steroids (NAS) in the mechanism controlling pregnancy sustaining. The data in the literature including our studies show that there is a complex mechanism providing synthesis of either pregnancy sustaining or parturition provoking steroids. This mechanism includes the boosting placental synthesis of CRH with approaching parturition inducing the excessive synthesis of 3beta-hydroxy-5-ene steroid sulfates serving primarily as precursors for placental synthesis of progestogens, estrogens and NAS. The distribution and changing activities of placental oxidoreductases are responsible for the activation or inactivation of the aforementioned steroids, which is compartment-specific (maternal and fetal compartments) and dependent on gestational age, with a tendency to shift the production from the pregnancy-sustaining steroids to the parturition provoking ones with an increasing gestational age. The fetal and maternal livers catabolize part of the bioactive steroids and also convert some precursors to bioactive steroids. Besides the progesterone, a variety of its 5alpha/beta-reduced metabolites may significantly influence the maintenance of human pregnancy, provide protection against excitotoxicity following acute hypoxic stress, and might also affect the pain perception in mother and fetus.  相似文献   

20.
Binucleate cells of sheep and goat fetal placentae comprise about one-fifth of the trophectodermal layer at the feto-maternal interface. When isolated and incubated in vitro they produce the steroids that are synthesized by the placenta in vivo (progesterone in sheep, 5 beta-pregnane-3 alpha,20 alpha diol in goats). This study demonstrates that progesterone synthesis in binucleate cell preparations in sheep was increased by prostaglandin (PG) E-2, nordihydroguaiaracetic acid (NDGA) and methylisobutylxanthine, but reduced by indomethacin, whereas in goats only NDGA produced any effect (an increase). None of the other compounds tested (luteinizing hormone, follicle stimulating hormone, prolactin, dibutyryl cAMP, A23187 or phorbolmyristic acetate) had any effect. Sheep binucleate cells also produced PGE-2 from arachidonic acid. These results suggest that, in sheep, products of both the cyclooxygenase (producing PGE-2) and lipoxygenase (inhibited by NDGA) pathways of arachidonic acid metabolism have regulatory roles in placental steroid synthesis, but only the lipoxygenase pathway is relevant in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号