共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. 总被引:8,自引:0,他引:8
下载免费PDF全文

We have investigated the molecular basis for the reported synergism between peptaibols and cell wall hydrolytic enzymes in the antagonism of phytopathogenic fungi by Trichoderma harzianum. beta-Glucan synthase activity on isolated plasma membranes of Botrytis cinerea was inhibited in vitro by the peptaibols trichorzianin TA and TB, and this inhibition was reversed by the addition of phosphatidylcholine. beta-Glucan synthesis in vivo, assayed by the incorporation of [2-(3)H]glucose into cell wall material, was inhibited by the presence of peptaibols, and this inhibition was synergistic with exogenously added T. harzianum beta-1,3-glucanase. This synergism is therefore explained by an inhibition of the membrane-bound beta-1,3-glucan synthase of the host by the peptaibols, which inhibit the resynthesis of cell wall beta-glucans, sustain the disruptive action of beta-glucanases, and all together enhance the fungicidal activity. Therefore, we have identified cell wall turnover as a major target of mycoparasitic antagonism. 相似文献
2.
Imbert-Bouyer S Merlaud A Imbert C Daniault G Rodier MH 《FEMS microbiology letters》2004,238(1):207-211
Some carbohydrates are known to decrease the attachment of Acanthamoeba sp. to biological surfaces. By a method based on the reduction of a tetrazolium salt (XTT) by the mitochondrial dehydrogenases of the parasites, d-mannose and alpha-d-mannopyranoside have been shown to reduce Acanthamoeba attachment to inert surfaces, indicating that the mannose binding protein of Acanthamoeba trophozoites is involved in adherence to inert surfaces. The reduction in attachment is dose dependant and is not linked with a potential toxicity of the carbohydrates. All the species of Acanthamoeba tested were concerned by this mannose binding protein, but the adhesion of A. culbertsoni was also reduced by the presence of glucose. 相似文献
3.
C. Cortés A. Gutiérrez V. Olmedo J. Inbar I. Chet A. Herrera-Estrella 《Molecular genetics and genomics : MGG》1998,260(2-3):218-225
The mycoparasite Trichoderma harzianum has been extensively used in the biocontrol of a wide range of phytopathogenic fungi. Hydrolytic enzymes secreted by the parasite have been directly implicated in the lysis of the host. Dual cultures of Trichoderma and a host, with and without contact, were used as means to study the mycoparasitic response in Trichoderma. Northern analysis showed high-level expression of genes encoding a proteinase (prb1) and an endochitinase (ech42) in dual cultures even if contact with the host was prevented by using cellophane membranes. Neither gene was induced during the interaction of Trichoderma with lectin-coated nylon fibres, which are known to induce hyphal coiling and appressorium formation. Thus, the signal involved in triggering the production of these hydrolytic enzymes by T. harzianum during the parasitic response is independent of the recognition mediated by this lectin-carbohydrate interaction. The results showed that induction of prb1 and ech42 is contact-independent, and a diffusible molecule produced by the host is the signal that triggers expression of both genes in vivo. Furthermore, a molecule that is resistant to heat and protease treatment, obtained from Rhizoctonia solani cell walls induces expression of both genes. Thus, this molecule is involved in the regulation of the expression of hydrolytic enzymes during mycoparasitism by T. harzianum. 相似文献
4.
The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain 总被引:1,自引:1,他引:1
Mohamed Chami Nicolas Bayan Jean Louis Peyret Thaddée Gulik-Krzywicki Gérard Leblon & Emanuel Shechter 《Molecular microbiology》1997,23(3):483-492
PS2 is the S-layer protein of Corynebacterium glutamicum . The S-layer may be detached from the cell as organized sheets by detergents at room temperature. The solubilization of PS2 in the form of monomers requires detergent treatment at high temperature (70°C), conditions under which the protein is denatured. Treatment of the cells with proteinase K or trypsin results in the detachment of the organized S-layer, which remains organized. Because we show that trypsin cleaves the C-terminal part of the protein, we conclude that this domain is involved in the association of the S-layer to the cell but is not essential in the interaction between individual PS2 proteins within the S-layer. A modified form of PS2, deleted of its C-terminal hydrophobic sequence, was constructed. The protein is almost unable to form an organized S-layer and is mainly released into the medium. We suggest that PS2 is anchored via its C-terminal hydrophobic sequence to a hydrophobic layer of the wall of the bacterium located some distance above the cytoplasmic membrane. 相似文献
5.
The cell wall material from fruiting bodies of Laetiporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the alkali-soluble wall fraction from this polypore fungus contained 56.3% of (1-->3)-linked alpha-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranasepretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45oC. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase. 相似文献
6.
Four isolates of Trichoderma harzianum (ThN3, Th11, Th12 and Th16) were selected for their ability to control the in vitro development of the tomato root pathogen Pyrenochaeta lycopersici. Analysis of the mechanisms involved in biocontrol showed that the formation of non-volatile metabolites appears to be one of those involved in biocontrol of P. lycopersici by all T. harzianum isolates tested. Nevertheless, the higher secretion of chitinases, both in number of isoenzymes and activity by the Th11 strain, correlated well with its higher ability to control this agent in laboratory and greenhouse experiments as compared to the other T. harzianum isolates tested. The secretion of beta-1,3-endoglucanases and/or proteases appeared to have less significance than endochitinases in the biological control of P. lycopersici. 相似文献
7.
8.
9.
The adherence of Candida albicans and C. tropicalis to protein-adsorbed surfaces was investigated with surface-modified glass slides to which serum or salivary proteins were covalently bound. A specific adherence like a ligand-receptor interaction was observed between C. albicans and mucin- or salivary protein-immobilized glass slides. This interaction was eliminated by deglycosylation of the slides, suggesting that the receptor may be an oligosaccharide(s) contained mucin or saliva. A similar specific interaction was also observed between C. tropicalis and fibrinogen-immobilized glass surfaces. When the numbers of adherent cells to deglycosylated protein-immobilized glass glides were plotted against zeta potentials and contact angles of these protein-immobilized glass slides, a significant correaltion was observed between the numbers of adherent cells and zeta potentials in the case of C. albicans (r = –0.87), whereas a significant correlation was observed between cell numbers and contact angles (r = 0.82) in the case of C. tropicalis. These results suggest that the forces governing the adherence of fungi to pellicle in dentures may vary depending upon the surface properties of fungi and substrate. 相似文献
10.
Influence of sorbitol on protein production and glycosylation and cell wall formation in Trichoderma reesei 总被引:1,自引:0,他引:1
Górka-Nieć W Perlińska-Lenart U Zembek P Palamarczyk G Kruszewska JS 《Fungal biology》2010,114(10):855-862
Sorbitol is often used at 1 mol/liter as an osmotic stabilizer for cultivation of fungi with a fragile cell wall phenotype. On the other hand, at this concentration sorbitol causes an osmotic stress in fungal cells resulting in intensive production of intracellular glycerol. The highly increased consumption of glucose for glycerol synthesis may lead to changes in processes requiring carbohydrate residues. This study provides new information on the consequences of osmotic stress to the cell wall composition, protein production and glycosylation, and cell morphology of Trichoderma reesei. We observed that high osmolarity conditions enhanced biomass production and strongly limited synthesis of cell wall glucans and chitin. Moreover, in these conditions the amount of secreted protein decreased nearly ten-fold and expression of cbh1 and cbh2 genes coding for cellobiohydrolase I and cellobiohydrolase II, the main secretory proteins in T. reesei, was inhibited resulting in a lack of the proteins in the cell and cultivation medium. The activity of DPM synthase, enzyme engaged in both N- and O-glycosylation pathways, was reduced two-fold, suggesting an overall inhibition of protein glycosylation. However, the two modes of glycosylation were affected divergently: O-glycosylation of secreted proteins decreased in the early stages of growth while N-glycosylation significantly increased in the stationary phase. 相似文献
11.
Xiang Li Wang Mei Huang Junxia Jiang Weitao Yan Zhubing Chen Xuesen Yin Chengmiao Mao Zhiquan 《Plant Growth Regulation》2022,96(1):145-156
Plant Growth Regulation - Apple replant disease (ARD) is a common problem, which occurs in all major apple-growing regions worldwide. It hinders the growth of apple trees and reduces apple yield... 相似文献
12.
13.
14.
哈茨木霉的培养及其对烟草疫霉生长的抑制研究 总被引:2,自引:1,他引:2
哈茨木霉是一类重要的植病生防因子。哈茨木霉TH-1分别在PDA培养基、麦芽糖培养基、查氏培养基和琼脂培养基上培养均能产孢,其中PDA培养基为最适培养基。PDA培养基上,菌丝生长适宜温度27.5℃~35℃,最适温度32.5℃,产孢最适温度27.5℃。菌丝生长适宜pH值为3~7,产孢适宜pH值为5-9,生长与产孢最适pH值为5。光照对菌丝生长影响不大但明显影响菌株的产孢数量,光照时间越长产孢量越大。对峙培养试验表明TH-1明显抑制疫霉菌的生长速率,其无菌滤液明显抑制烟草疫霉菌游动孢子的萌发,并抑制游动孢子芽管的伸长,TH-1对游动孢子萌发的相对抑制率为12.7%,对芽管生长长度的相对抑制率为63.1%。水解酶平板活性测定显示,TH-1产生β-1,3葡聚糖酶与纤维素酶,从而使烟草疫霉菌细胞壁的消解,产生非挥发性抗生素抑制烟草疫霉菌孢子萌发,但对菌丝生长影响不大。 相似文献
15.
An epitope of rice threonine- and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins 总被引:5,自引:0,他引:5
A monoclonal antibody, LM1, has been derived that has a high affinity for an epitope of hydroxyproline-rich glycoproteins (HRGPs). In suspension-cultured rice (Oryza sativa L.) cells the epitope is carried by three major proteins with different biochemical properties. The most abundant is the 95-kDa extracellular rice extensin, a threonine- and hydroxyproline-rich glycoprotein (THRGP) occurring in the cell wall and secreted into the medium. This THRGP can be selectively oxidatively cross-linked in the presence of hydrogen peroxide and an endogenous peroxidase with the result that it does not enter a protein gel. A second polypeptide with the LM1 epitope (180 kDa), also occurring in the suspension-cultured cells and medium, is not oxidatively cross-linked. Three further polypeptides (52, 65 and 110 kDa) with the characteristics of hydrophobic proteins of the plasma-membrane also carry the LM1 epitope as determined by immuno-blotting of detergent/aqueous partitions of a plasma-membrane preparation and immuno-fluorescence studies with rice protoplasts. At the rice root apex the LM1 epitope is carried by four glycoproteins and is developmentally regulated. The major locations of the epitope are at the surface of cells associated with the developing protoxylem and metaxylem in the stele, the longitudinal radial walls of epidermal cells and a sheath-like structure at the surface of the root apex.Abbreviations AGP
arabinogalactan protein
- ELISA
enzyme-linked immunosorbent assay
- HRGP
hydroxyproline-rich glycoprotein
- THRGP
threonine- and hydroxyproline-rich glycoprotein
This work was supported by The Leverhulme Trust. We also acknowledge support from The Royal Society and thank Prof. L.A. Staehelin for the carrot extensin, N. Stacey for the rice cell culture and Dr. J. Keen for protein sequencing. 相似文献
16.
Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed. 相似文献
17.
The viral sigma1 protein and glycoconjugates containing alpha2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces 总被引:1,自引:0,他引:1
下载免费PDF全文

Helander A Silvey KJ Mantis NJ Hutchings AB Chandran K Lucas WT Nibert ML Neutra MR 《Journal of virology》2003,77(14):7964-7977
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces. 相似文献
18.
19.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules. 相似文献
20.
Purification and characterization of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. 总被引:2,自引:1,他引:2
下载免费PDF全文

The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes. 相似文献