首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of the antioxidants ascorbate and glutathione were measured in the apoplast of beech (Fagus sylvatica L.) leaves and in leaf tissue. During early leaf development, reduced ascorbate (ASC) was almost absent from the apoplast, whereas levels of oxidized ascorbate (DHA) were high. Less than 20% of the apoplastic ascorbate was reduced. ASC increased towards midsummer, reaching top levels of about 4molm?3 apoplast volume in July and August. Reduction increased to 60–75% in summer. Neither DHA reductase nor glutathione was detected in the apoplast of beech leaves. Levels of apoplastic ascorbate were compared with ambient concentrations of ozone in air. Statistical analysis indicated a significant interrelation between atmospheric ozone and apoplastic ascorbate. In midsummer of 1993, contents of DHA were increased in the apoplast when ozone concentrations were high. Apoplastic ASC was also positively correlated with ambient ozone concentrations, but with a delay of 3 to 7d. In leaf tissue, levels of ascorbate were between 17 and 21 μmolg?1 FW in summer. Except for late April and November, more than 95% of the intracellular ascorbate was reduced. Glutathione contents were lowest during the summer. Oxidation was increased in spring and autumn, when apoplastic ascorbate was also largely oxidized. Usually, 80 to 90% of the glutathione was reduced. During the summer, intracellular concentrations of oxidized glutathione (GSSG) were increased, with a delay of about 1d following periods of high ambient ozone concentrations. The transitory accumulation of GSSG may be explained by slow enzymatic regeneration of glutathione.  相似文献   

2.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

3.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at -0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 - ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( •OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献   

4.
The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.  相似文献   

5.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

6.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at &#109 0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 &#109 ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( &#148 OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献   

7.
盐碱胁迫是植物遭受的常见非生物胁迫之一,气体信号硫化氢(H2S)在植物响应盐碱胁迫中发挥着重要作用。为探讨H2S对盐碱胁迫下裸燕麦抗坏血酸(AsA)-谷胱甘肽(GSH)循环的调控效应,以品种‘定莜9号’为材料,研究了喷施H2S供体硫氢化钠(NaHS)或H2S合成抑制剂羟胺(HA)对盐碱混合胁迫下植株生长、叶片活性氧、膜脂过氧化和AsA-GSH循环中抗氧化物质和关键酶的影响。结果表明: 喷施50 μmol·L-1 NaHS可缓解50 mmol·L-1盐碱混合胁迫对裸燕麦生长的抑制,降低超氧阴离子、H2O2、丙二醛、氧化型抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量,提高AsA/DHA和GSH/GSSG,而对还原型抗坏血酸(AsA)含量无显著影响。喷施NaHS还提高了盐碱混合胁迫下裸燕麦叶片AsA合成关键酶L-半乳糖脱氢酶(GalDH)和L-半乳糖-1,4-内酯脱氢酶(GalLDH)及AsA-GSH循环中单脱氢抗坏血酸还原酶(MDHAR)活性,降低了抗坏血酸过氧化物酶(APX)和脱氢抗坏血酸还原酶(DHAR)活性,而对抗坏血酸氧化酶(AO)和谷胱甘肽还原酶(GR)活性的影响不大。增添HA后部分或完全解除了喷施NaHS的上述作用。这说明H2S可通过促进AsA合成和增强MDHAR活性提高AsA-GSH循环效率,降低盐碱胁迫对裸燕麦的氧化伤害。  相似文献   

8.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

9.
Infection of tomato leaves with the necrotrophic fungus Botrytis cinerea resulted in substantial changes in enzymatic and non-enzymatic components of the ascorbate-glutathione cycle as well as in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST), and l-galactono-gamma-lactone dehydrogenase (GLDH) activities. In the initial phase of the 5 d experiment CuZn SOD was the most rapidly induced isoform (up to 209% of control), whereas later on its activity increase was not concomitant with the constant total SOD enhancement. Starting from the second day B. cinerea infection diminished the mitochondrial antioxidant capacity by decreasing activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) as well as declining ascorbate and glutathione contents. This was accompanied by dehydroascorbate (DHA) and oxidized glutathione (GSSG) accumulation that resulted in ascorbate and glutathione redox ratios decreases. The strongest redox ratio decline of 29% for ascorbate and of 34% for glutathione was found on the 3rd and 2nd days, respectively. Glutathione reductase (GR) induction (185% of control 2 d after inoculation) was insufficient to overcome the decreased antioxidant potential of glutathione. Changes in the ascorbate pool size were closely related to the activity of l-galactono-gamma-lactone dehydrogenase (GLDH). The activities of two glutathione-dependent enzymes: GSH-Px and GST were increased from day 1 to day 4. These results demonstrated that in B. cinerea-tomato interaction mitochondria could be one of the main targets for infection-induced oxidative stress.  相似文献   

10.
The purpose of this study was to elucidate whether exogenous spermidine (Spd) protection of tomato (Solanum lycopersicum L.) seedlings under salinity-alkalinity stress is associated with antioxidant enzymes in the chloroplast. The effects of exogenous Spd on antioxidant enzyme activity and antioxidant content in the chloroplast were evaluated in seedlings of salt-sensitive ecotype (Zhongza 9) grown in a 75 mM salinity-alkalinity solution, with or without 0.25 mM Spd foliar spraying. Results showed that salinity-alkalinity stress increased MDA content, superoxide anion O2?- generation rate, superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) activities and ratio of AsA/DHA and reduced contents of ascorbate (AsA), dehydroascorbate (DHA), AsA+DHA, glutathione (GSH), oxidized glutathione (GSSG), GSH+GSSG, dehydroascorbate reductase (DHAR) activity and ratio of GSH/GSSG in chloroplasts. The exogenous Spd application combined with salinity-alkalinity stress decreased the O2?- generation rate and MDA content compared to salinity-alkalinity stress alone. The exogenous Spd also increased AsA-GSH cycle components and increased all antioxidant enzyme activities in most cases. Therefore, exogenous Spd alleviates salinity-alkalinity stress damage using antioxidant enzymes and non-enzymatic systems in chloroplasts.  相似文献   

11.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   

12.
Hydrogen-peroxide-scavenging systems within pea chloroplasts   总被引:8,自引:0,他引:8  
D. J. Gillham  A. D. Dodge 《Planta》1986,167(2):246-251
The subcellular distribution of ascorbate peroxidase and glutathione reductase (EC 1.6.4.2) in pea leaves was compared with that of organelle markers. Enzyme distribution was found to be similar to that of the chloroplast enzyme NADPH-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). Isolated chloroplasts showed a close correlation between intactness and the percentage of enzyme activity recovered. Chloroplasts of 85% intactness were found to contain a high proportion of leaf dehydroascorbate reductase activity (EC 1.8.5.1), 10% of leaf glutathione and 30% of leaf ascorbate. These results are discussed in relation to the potential role of chloroplast antioxidant systems in plant resistance to environmental and other stress conditions.Abbreviations GSH reduced glutathione - GSSG oxidized glutathione - NADPH-GPD glyceraldehyde-3-phosphate dehydrogenase - SOD superoxide dismutase  相似文献   

13.
One-year-old grapevines (Vitis labrusca L. cv. Concord) were supplied with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modified Hoagland's solution twice weekly for 4 weeks. As leaf N decreased in response to N limitation, leaf chlorophyll (Chl) decreased linearly whereas leaf absorptance declined curvilinearly. Compared with high N leaves, low N leaves had lower quantum efficiency of PSII as a result of both an increase in non-photochemical quenching (NPQ) and an increase in closure of PSII reaction centres at midday under high photon flux density (PFD). Both the xanthophyll cycle pool size on a Chl basis and the conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at noon increased with decreasing leaf N. NPQ was closely related to A+Z expressed either on a Chl basis or as a percentage of the xanthophyll cycle pool. As leaf N increased, superoxide dismutase (SOD) activity on a Chl basis decreased linearly; activities of catalase (CAT) and glutathione reductase (GR) on a Chl basis increased linearly; activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) expressed on the basis of Chl decreased rapidly first, then gradually reached a low level. In response to N limitation, the contents of ascorbate (AsA), dehydroascorbate (DAsA), reduced glutathione (GSH), and oxidized glutathione (GSSG) increased when expressed on a Chl basis, whereas the ratios of both AsA to DAsA and GSH to GSSG decreased. It is concluded that, in addition to decreasing light absorption by lowering Chl concentration, both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system are up-regulated to protect low N leaves from photo-oxidative damage under high light.  相似文献   

14.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

15.
Cd~(2+)胁迫对小桐子幼苗叶片抗氧化系统的影响   总被引:1,自引:0,他引:1  
以小桐子幼苗为材料,设置不同浓度CdCl_2处理,测定Cd~(2+)胁迫对小桐子幼苗叶片中可溶性蛋白、丙二醛(MDA)含量,以及5种抗氧化酶活性和2种抗氧化剂含量的变化,探讨镉胁迫对小桐子幼苗抗氧化系统的影响。结果表明:(1)Cd~(2+)胁迫导致小桐子幼苗叶片中可溶性蛋白含量降低、MDA含量增加;(2)随着镉胁迫时间的延长,幼苗叶片中愈创木酚过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸专一性过氧化酶(APX)、谷胱甘肽还原酶(GR)等抗氧化酶活性表现出先升高然后降低的变化趋势;(3)幼苗叶片中还原型抗坏血酸(ASA)和还原型谷胱甘肽(GSH)含量随着胁迫时间延长而降低,但其中氧化型抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量则升高。研究表明,镉胁迫初期能诱导小桐子幼苗抗氧化系统活性显著增强,提高其抗氧化能力,但随着胁迫时间的延长,致使其抗氧化酶的活性和抗氧物质含量下降,植株遭受明显氧化胁迫,幼苗生长受到镉的严重毒害。  相似文献   

16.
Ramonda serbica plants dehydrated for 14 days reached a relative water content of 4.2% and entered into anabiosis prior to being rehydrated for 48 h. Total ascorbate (AsA + DHA) and glutathione (GSH + GSSG) contents increased during dehydration and approached control values by the end of rehydration. Reduced ascorbate (AsA) and glutathione (GSH) were consumed during the first 13 days of dehydration when guaiacol-, syringaldazine- and phenolic peroxidases (EC 1.11.1.7) increased. At the end of dehydration AsA and GSH accumulated whereas peroxidases decreased to half the value of controls. In this period, plants of R. serbica face a phase of reduced metabolism and, thus, of reduced consumption of antioxidants. During rehydration, both AsA and GSH were utilized reaching, after 48 h, about 20 and 40% of their total pools, respectively; moreover peroxidases increased showing the recovery of metabolic activities. In the dehydration process total phenolic acids decreased, but accumulated after 5 h of rehydration and returned to control values at the end of rehydration. In R. serbica leaves, the most representative phenolic acids were protocatechuic, p -hydroxybenzoic and chlorogenic acids. Most concentrated phenolic acids, such as protocatechuic and chlorogenic acids, accumulated during the first period of rehydration when AsA decreased. These results suggest a role of ascorbate in inhibiting oxidation when phenolic peroxidases remain at low levels. As a consequence of this inhibition, ascorbate was oxidized and when most of it was consumed, oxidation of phenols resumed.  相似文献   

17.
18.
Riboflavin is the precursor of the coenzymes flavin monophosphate (FMN) and flavin adenine dinucleotide (FAD), which serve as indispensable redox cofactors in all plants. Numerous data indicate that riboflavin is involved in pathogen resistance but less data are available on abiotic stress tolerance. In this experiment, the overexpression of the riboflavin-binding protein resulted in an enhancement of vegetative growth and net photosynthetic rate, and an acceleration of floral transition in transgenic Arabidopsis thaliana REAT11 (containing less than half the normal levels of free riboflavin, FMN, and FAD) compared to wild-type Col-0 under nonstressed conditions. The effect of drought stress on the antioxidant response of Col-0 and REAT11 was compared, where 20- and 40-day-old grown plants were subjected to 10 % PEG 6000 treatment for 2 days. Stress conditions caused a significant increase in H2O2 accumulation, lipid peroxidation, and membrane permeability in Col-0 over that in REAT11. Greater activity levels of superoxide dismutase, ascorbate peroxidase, and glutathione reductase were observed in the leaves of REAT11 compared to those of Col-0. Significant increases in total ascorbate and glutathione content and higher ratios of ASC/DHA: (ASC and DHA are reduced and oxidized ascorbate, respectively) and GSH/GSSG: (GSH and GSSG are reduced and oxidized glutathione, respectively) were observed in the leaves of REAT11 compared to those in Col-0 under drought conditions. In addition, enhancement of free proline and soluble sugar accumulation was observed in REAT11 compared to Col-0 under stress. Our results suggest that a slight deficiency in free riboflavin can paradoxically induce both a higher vegetative growth rate and an enhanced tolerance to drought in transgenic plants. The “stress escape” hypothesis is proposed here to explain this interesting phenomenon.  相似文献   

19.
This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.  相似文献   

20.
In order to elucidate the response of the ascorbate-glutathione (ASC-GSH) cycle to drought stress, the activities of antioxidant enzymes and the levels of molecules involved in the ASC-GSH metabolism were studied in Trifolium repens L. seedlings subjected to PEG-induced water deficit. Compared to the control, the contents of H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) increased in PEG-treated seedlings, whereas the glutathione (GSH) content kept constant during the drought period. Further more, the ASC/DHA and GSH/GSSG ratios decreased in the presence of PEG. Except for that of monodehydroascorbate reductase (MDHAR), the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were up-regulated during water deficit, and the increases in APX and DHAR activities were much higher than those in GR activity. These data indicate that fluctuations in the ASC-GSH metabolism resulted from PEG treatment may have a positive effect on drought stress mitigation in T. repens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号