首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules.  相似文献   

2.
Genotypic trade-offs between male and female reproduction are commonly assumed in theoretical studies of the evolution of gender specialization. Although these trade-offs are supported by higher seed production of females than hermaphrodites in natural populations of gynodioecious species, comparisons between male and female reproductive allocation among hermaphrodite individuals under controlled conditions are rare. We assessed phenotypic and genotypic correlations between stamen and fruit production in fruiting males of the near-dioecious herb Astilbe biternata. In the field, we found a significant negative phenotypic correlation between stamen production and fruit production within individuals that produced both stamens and fruit as well as higher fruit set in females than fruiting males. The negative correlation between fruit and stamen production that was observed in the field was also apparent across clonally propagated genotypes. These results suggest that negative genetic correlations between male and female reproduction may limit the independent evolution of fruit and stamen production in A. biternata.  相似文献   

3.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

4.
Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL.  相似文献   

5.

Background  

Sexual conflicts between mating partners can strongly impact the evolutionary trajectories of species. This impact is determined by the balance between the costs and benefits of mating. However, due to sex-specific costs it is unclear how costs compare between males and females. Simultaneous hermaphrodites offer a unique opportunity to determine such costs, since both genders are expressed concurrently. By limiting copulation of focal individuals in pairs of pond snails (Lymnaea stagnalis) to either the male role or the female role, we were able to compare the fecundity of single sex individuals with paired hermaphrodites and non-copulants. Additionally, we examined the investment in sperm and seminal fluid of donors towards feminized snails and hermaphrodites.  相似文献   

6.
BACKGROUND AND AIMS: The reproductive costs for individuals with the female function have been hypothesized to be greater than for those with the male function because the allocation unit per female flower is very high due to the necessity to nurture the embryos until seed dispersal occurs, while the male reproductive allocation per flower is lower because it finishes once pollen is shed. Consequently, males may invest more resources in growth than females. This prediction was tested across a wide geographical range in a tree with a dimorphic breeding system (Fraxinus ornus) consisting of males and hermaphrodites functioning as females. The contrasting ecological conditions found across the geographical range allowed the evaluation of the hypothesis that the reproductive costs of sexual dimorphism varies with environmental stressors. METHODS: By using random-effects meta-analysis, the differences in the reproductive and vegetative investment of male and hermaphrodite trees of F. ornus were analysed in 10 populations from the northern (Slovakia), south-eastern (Greece) and south-western (Spain) limits of its European distribution. The variation in gender-dimorphism with environmental stress was analysed by running a meta-regression between these effect sizes and the two environmental stress indicators: one related to temperature (the frost-free period) and another related to water availability (moisture deficit). KEY RESULTS: Most of the effect sizes showed that males produced more flowers and grew more quickly than hermaphrodites. Gender differences in reproduction and growth were not minimized or maximized under adverse climatic conditions such as short frost-free periods or severe aridity. CONCLUSIONS: The lower costs of reproduction for F. ornus males allow them to grow more quickly than hermaphrodites, although such differences in sex-specific reproductive costs are not magnified under stressful conditions.  相似文献   

7.
Summary Large natural populations of the marine polychaeteCapitella capitata (species type I) contain males, females, and occasionally, hermaphrodites. Environmental conditions control the occurrence of hermaphrodites. At low density or in groups with female-biased sex ratios, males develop into hermaphrodites, and hermaphrodites are common. Crosses suggest that females are heterogametic, and males and hermaphrodites are homogametic. Heterogametic females do not become hermaphrodites.This study shows that in homogametic individuals, environmental conditions determine not only the development of hermaphroditism but also the expression of initial gender. Homogametic individuals can express either male or female gender initially, and homogametic individuals of either gender can develop subsequently into simultaneous hermaphrodites. The choice of initial gender depends on isolation. Most homogametic juveniles become females if reared alone but males if reared with other conspecifics. Homogametic males readily develop into hermaphrodites if females are rare. In contrast, homogametic females rarely become hermaphrodites.  相似文献   

8.
Nutrient ratios have been related to nutrient limitation of algal growth in lakes. Retention of nutrients in lakes, by sedimentation and by denitrification, reduces the nutrient concentrations in the water column, thereby enhancing nutrient limitation. Differential retention of nitrogen and phosphorus alters their ratios in lakes and thereby contributes to determine whether nitrogen or phosphorus limits algal growth. We examined the relationships between differential nutrient retention, nutrient ratios, and nutrient limitation in Lake Brunner, a deep oligotrophic lake. The observed retention of nitrogen (20%) and phosphorus (47%) agreed with predictions by empirical equations from literature. As a result of differential retention with a much larger proportion of phosphorus retained than that of nitrogen, the nitrogen:phosphorus ratio was higher in the lake (69) than in the inflows (46). While the mean ratio in the inflows suggested no or only moderate phosphorus limitation, the lake appeared to be severely phosphorus limited. Combining empirical equations from literature that predict nitrogen and phosphorus retention suggests that the nitrogen:phosphorus ratio is enhanced by greater retention of phosphorus compared to nitrogen only in deep lakes with relatively short residence times, such as Lake Brunner. In contrast, in most lakes differential retention is expected to result in lower nitrogen:phosphorus ratios.  相似文献   

9.
Both changes in sex allocation and pollination mode may promote the separation of sexes in plant populations. Simultaneous evolution of wind pollination and dimorphism has occurred in Schiedea, where species with different female frequencies provide an opportunity to observe the effect of wind pollination on sex allocation and floral morphology. Differences among species in the ratio of anther to ovary volume were not the result of sex allocation trade-offs, but instead resulted from production of vestigial stamens in females; there were no changes in ovary volume in males and hermaphrodites (MH) of dimorphic species. Relative to hermaphroditic species, dimorphic species had more condensed inflorescences, a pattern often associated with wind pollination. Within dimorphic species, MH had longer filament lengths than females, and females had longer stigmas than MHs. These traits are characteristic of wind pollination, but there was no relationship between the degree of sexual dimorphism and female frequency. Ovary volume and ovule number and size had positive phenotypic correlations between females and MH of dimorphic species, making sex specialization more difficult. In dimorphic Schiedea species, selection for wind pollination may have a greater effect on floral traits than trade-offs in allocation between male and female function.  相似文献   

10.
Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.  相似文献   

11.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

12.
Nutrient availability is widely considered to constrain primary productivity in lowland tropical forests, yet there is little comparable information for the soil microbial biomass. We assessed microbial nutrient limitation by quantifying soil microbial biomass and hydrolytic enzyme activities in a long-term nutrient addition experiment in lowland tropical rain forest in central Panama. Multiple measurements were made over an annual cycle in plots that had received a decade of nitrogen, phosphorus, potassium, and micronutrient addition. Phosphorus addition increased soil microbial carbon (13 %), nitrogen (21 %), and phosphorus (49 %), decreased phosphatase activity by ~65 % and N-acetyl β-glucosaminidase activity by 24 %, but did not affect β-glucosidase activity. In contrast, addition of nitrogen, potassium, or micronutrients did not significantly affect microbial biomass or the activity of any enzyme. Microbial nutrients and hydrolytic enzyme activities all declined markedly in the dry season, with the change in microbial biomass equivalent to or greater than the annual nutrient flux in fine litter fall. Although multiple nutrients limit tree productivity at this site, we conclude that phosphorus limits microbial biomass in this strongly-weathered lowland tropical forest soil. This finding indicates that efforts to include enzymes in biogeochemical models must account for the disproportionate microbial investment in phosphorus acquisition in strongly-weathered soils.  相似文献   

13.
It is essential to know the nutrient limitation status of biofilms to understand how they may buffer uptake and export of nutrients from polluted watersheds. We tested the effects of nutrient additions on biofilm biomass (chlorophyll a, ash free dry mass (AFDM), and autotrophic index (AI, AFDM/chl a)) and metabolism via nutrient-diffusing substrate bioassays (control, nitrogen (N), phosphorus (P), and N + P treatments) at 11 sites in the Upper Snake River basin (southeast Idaho, USA) that differed in the magnitude and extent of human-caused impacts. Water temperature, turbidity, and dissolved inorganic N concentrations all changed seasonally at the study sites, while turbidity and dissolved inorganic N and P also varied with impact level. Chl a and AI on control treatments suggested that the most heavily impacted sites supported more autotrophic biofilms than less-impacted sites, and that across all sites biofilms were more heterotrophic in autumn than in summer. Nutrient stimulation or suppression of biofilm biomass was observed for chl a in 59% of the experiments and for AFDM in 33%, and the most frequent response noted across all study sites was N limitation. P suppression of chl a was observed only at the most-impacted sites, while AFDM was never suppressed by nutrients. When nutrient additions did have significant effects on metabolism, they were driven by differences in biomass rather than by changes in metabolic rates. Our study demonstrated that biofilms in southeast Idaho rivers were primarily limited by N, but nutrient limitation was more frequent at sites with good water quality than at those with poor water quality. Additionally, heterotrophic and autotrophic biofilm components may respond differently to nutrient enrichment, and nutrient limitation of biofilm biomass should not be considered a surrogate for metabolism in these rivers. Handling editor: D. Ryder  相似文献   

14.
1. Nutrient diffusing substrata were used to determine the effect of added inorganic nitrogen (N) and phosphorus (P) on the development of epilithic and epixylic biofilms in 10 North American streams. Four treatments of diffusing substrata were used: Control (agar only), N addition (0.5 m NaNO3), P addition (0.5 m KH2PO4), and N + P combined (0.5 m NaNO3 + 0.5 m KH2PO4). Agar surfaces were covered with glass fibre filters (for epilithon) or discs of untreated white oak wood veneer (for epixylon). 2. We found that if algae showed significant response to nutrient addition, N limitation (either N alone or N with P) was the most frequent response both on GF/F filters and on wood. Despite the low dissolved nutrient concentrations in our study streams, more than a third of the streams did not show any response to N or P addition. In fact, P was never the sole limiting nutrient for algal biofilms in this study. 3. Nutrient addition influenced algal colonisation of inorganic versus organic substrata in different ways. The presence of other biofilm constituents (e.g. fungi or bacteria) may influence whether algal biomass on wood increased in response to nutrient addition. Algae on organic and inorganic substrata responded similarly to nutrient addition in only one stream. 4. Fungal biomass on wood was nutrient limited in six of 10 study streams. N limitation of fungal biomass (with or without secondary P limitation) was most frequent, but P limitation did occur in two streams. 5. Our results show that biomass responses to nutrient addition by the heterotrophic and autotrophic components of the epixylic biofilm were different, though both experienced the same stream nutrient conditions. For algae and fungi growing on wood, limiting nutrients were rarely similar. Only three of nine streams showed the same biomass response to nutrient addition, including two that showed no significant change in biomass despite added nutrients.  相似文献   

15.
土壤氮水平对喜旱莲子草原产地和引入地基因型生长和防御的影响 同种植物生长在资源丰富生境中的个体,其防御水平被认为低于生长在资源匮乏生境中的个体。然而,生境的养分水平如何影响植物的诱导抗性和耐受性,以及这种影响在入侵植物的原产地和引入 地种群间是否存在差异,目前均知之甚少。本研究以入侵植物喜旱莲子草(Alternanthera philoxeroides)的原产地阿根廷和引入地美国的基因型为研究对象设计同质园实验,以探究土壤氮水平对植物的生长、组成和诱导性[莲草直胸跳甲(Agasicles hygrophila)取食诱导]化学防御以及耐受性的影响。实验中,我们测定了植物总生物量、伸长速率(生长速率的表征)以及叶片和根系中总碳、总氮和三萜皂苷(化学防御物质)的含量。研究结果显示,植物在低土壤氮水平下表现出较高的组成抗性(植物在低土壤氮水平下的叶片三萜皂苷含量高于其在高土壤氮水平的33%)和耐受性[植物被取食后总生物量下降的程度更低(植物在高土壤氮水平和低土壤氮水平下被取食后总生物量分别下降了24%和15%)],而在高土壤氮水平下表现出较高的诱导抗性(在高土壤氮水平下的植物被取食后叶片三萜皂苷含量与空白对照的植物相比升高了24%)。植物的组成抗性和耐受性与生长速率存在权衡,但诱导抗性与生长速率存在显著的正相关性。此外,引入地基因型在低土壤氮水平下叶片碳含量显著低于原产地基因型(-6%),但这种差异在高土壤氮水平下消失。这些结果表明,土壤氮水平 影响植物对不同防御策略的选择偏好,并且在决定引入地基因型的表现时与植食作用存在交互作用。  相似文献   

16.
Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Theoretical models have shown that if nuclear genes control sex expression, then gynodioecy can evolve only when females have large advantages in one or more fitness components. These female advantages must be large enough that females' expected lifetime production of viable seeds is more than twice that of hermaphrodites. Previous studies have found that cytoplasmic inheritance and/or a large offspring-vigor advantage of females (caused by hermaphrodite self-pollination and inbreeding depression of selfed seeds) account for this breeding system's evolution. This paper reports studies of gynodioecy in Phacelia linearis, an insect-pollinated annual plant in which gender inheritance appears to be nuclear. Twenty-six P. linearis populations surveyed in northern Utah, USA, contain a majority of perfect-flowered hermaphrodites, but most (22) also contain male-sterile individuals (females), at frequencies of up to 0.16. The hermaphrodite selfing rate is low (0.00–0.20 in four populations). Maternal gender does not consistently affect components of offspring vigor, such as seed size, germination rate, seedling survivorship, and vegetative size. Plants of the two genders do not differ in number of seeds per fruit or mean seed mass. Females produce significantly more fruits and seeds than hermaphrodites in natural populations. The ratio of the mean lifetime seed production of females to the mean lifetime seed production of hermaphrodites ranged from 1.31 to 2.52 in six natural populations. Females have greater shoot biomass than hermaphrodites and produce more seeds at any given shoot biomass than hermaphrodites, suggesting that their seed-production advantage arises from gender-specific patterns of resource allocation to growth and reproduction. The gender difference in plant size varies across environments and across genetic backgrounds. In this species nuclear gynodioecy appears to be evolutionarily stable mainly because of resource compensation by females, without a large outcrossing advantage of females.  相似文献   

17.
In flowering plants, the evolution of dimorphic breeding systems from monomorphic ancestors can be associated with dry environments. One hypothesis to explain this pattern is that seed fertility of hermaphrodites decreases more than seed fertility of females under dry conditions, so that females have greater relative fitness. This could occur if seed production of hermaphrodites is more resource-limited than that of females, or shifts in pollination increase levels of selfing and inbreeding depression in hermaphrodites. Here we assess the role of dry environments in promoting a female fitness advantage in Wurmbea biglandulosa by focusing on monomorphic and dimorphic populations that occur along a longitudinal gradient of decreasing rainfall. Dimorphic populations occurred in sites with higher temperatures, lower rainfall and lower soil moisture. Overall, females had greater seed fertility than did hermaphrodites from monomorphic populations, which in turn had greater seed fertility than hermaphrodites from dimorphic populations. Ovuliferous flower and ovule production by the three gender morphs and seed fertility of females and hermaphrodites in monomorphic populations did not vary with soil moisture. By contrast, seed fertility of hermaphrodites in dimorphic populations was positively related to soil moisture. Accordingly, female frequency was higher in those sites where hermaphrodites produced relatively fewer seeds. Taken together our results indicate that dry environments promote the establishment of females by decreasing the relative seed fitness of hermaphrodites. Moreover, because seed fertility of hermaphrodites in monomorphic populations did not vary with soil moisture, resource limitation of female function may play only a minor role in the establishment of females. Other factors such as shifts in pollination and mating patterns of hermaphrodites could be involved. Key words:breeding system evolution, environmental stress, gender dimorphism, gynodioecy, sex ratio variationCo-ordinating editor: J.F. Stuefer  相似文献   

18.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

19.
The evolution of gynodioecy depends in part on the location (nucleus or cytoplasm) of gender-determining genes. Characters genetically correlated with gender also can be important in the evolution of this sexual system. For example, gender differences in the costs of flowers affect the potential for resource compensation by females for the loss of male function. This paper reports the genetics of gender and the nature of secondary sex characters of flowers in Phacelia linearis (Hydrophyllaceae), a gynodioecious annual in which females exhibit substantial compensation. A single nuclear gene has a major effect on gender, recessive homozygotes being male-sterile, but not all the data can be explained by this or other simple inheritance models. In nature, hermaphrodites have wider corollas than females and begin to flower slightly later than females. In a common environment, gender effects on corolla size are modified by genetic background and/or maternal effects. Hermaphrodite flowers have 15% greater dry biomass than female flowers, but similar ovule number and nectar sugar production. Hermaphrodite and female flowers differ in the linear dimensions and biomass allocation of several floral organs. In particular, the androecia and corollas of female flowers are smaller than those of hermaphrodite flowers, both in absolute terms and relative to the size of the rest of the flower. Corolla size reduction could be an important source of resources for compensation by females.  相似文献   

20.
A number of theoretical and methodological problems plague studies of sex allocation in hermaphroditic plants. Most models assume that consumable resources limit reproduction, yet one or both sexes may be mate-limited. Most models also assume that resource limitation causes trade-offs between the allocations to male and female functions, but the sexes may be limited by different critical resources, or their resource needs may not overlap in time. Problems arise in deciding which plant parts are reproductive, when to harvest them, how to apportion them to male and female roles, and what are the appropriate measures of their cost. When energy directly limits reproduction, or other needs can be translated into energetic costs, the great variation in composition of reproductive parts makes construction costs or respiration a more potentially accurate measure of investment than energy content or especially biomass. Some simple predictions from theoretical models include a 1:1 allocation ratio to male and female function in outcrossing hermaphrodites, a female-biassed ratio in proportion to the level of selfing, and lower average allocations to male function in animal-pollinated than in windpollinated plants. These predictions have not received much support from existing studies, thus emphasizing the need for better measures of allocation as well as better accounting of the many other possible factors that may determine individual (and population) allocation ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号