首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a straightforward and efficient synthetic strategy for the synthesis of three model glycine-arginine-glycine-aspartic acid-glycine (GRGDG) conjugates based on derivatives of NOTA and of their Ga(III) complexes targeted to the integrin α(ν)β(3) receptor. (71)Ga NMR spectroscopy showed that the Ga(III)-labeled conjugates are highly stable in aqueous solution. The (67)Ga-labeled conjugates proved to have high kinetic stability and showed a weak but specific binding to the receptors in a U87MG-glioblastoma cell line.  相似文献   

2.
In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.  相似文献   

3.
Esterified precursors of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA; 18) and 1,4,7-triazacyclononane-1,4,7-trisacetic acid (NOTA; 17,19) ligands bearing a dimethoxytritylated hydroxyl side arm were prepared and immobilized via an ester linkage to long chain alkyl amine derivatized controlled pore glass (LCAA-CPG). Oligonucleotide chains were then assembled on the hydroxyl function and conjugates were released and deprotected by a two-step cleavage with aqueous alkali and ammonia. The 3'-DOTA and 3'-NOTA conjugated oligonucleotides were converted to (68)Ga chelates by a brief treatment with [(68)Ga]Cl(3) at elevated temperature. Applicability of the conjugates for in vivo imaging with positron emission tomography (PET) was verified.  相似文献   

4.
PurposeMultiple receptors are co-expressed in many types of cancers. Octreotate (TATE) and Arg-Gly-Asp (RGD) peptides target somatostatin receptor 2 (sstr2) and integrin αvβ3, respectively. We developed and synthesized a heterodimer NOTA-3PEG4-TATE-RGD (3PTATE-RGD) and aimed to investigate its characteristics for dual-targeting sstr2 and integrin αvβ3.MethodsTATE and RGD peptides and 1,4,7-triazacylononane-N’,N’’,N’’’-triacetic acid (NOTA) were linked through a glutamate and polyethylene glycol (PEG) linker, then 3PTATE-RGD was labeled with 68Ga ion. Receptor-binding characteristics and tumor-targeting efficacy were tested in vitro and in vivo using H69 and A549 lung cancer cell lines and tumor-bearing mice models.Results[68Ga]-3PTATE-RGD had comparable sstr2 and integrin αvβ3-binding affinity with monomeric TATE and RGD in cell uptake and PET imaging study, respectively. In the competition study, H69 and A549 tumor uptake of [68Ga]-3PTATE-RGD was completed inhibited in the presence of an excess amount of unlabeled TATE or RGD, respectively. The blocked level didn’t grow when both of TATE and RGD mixture was co-injected with [68Ga]-3PTATE-RGD. The pharmacokinetics of [68Ga]-3PTATE-RGD is comparable with [68Ga]-TATE and [68Ga]-RGD, resulting in a larger application.Conclusion[68Ga]-3PTATE-RGD showed improved and wider tumor-targeting efficacy compared with monomeric TATE and RGD peptides, which warrants its further investigation in detection both of sstr2 and integrin αvβ3-related carcinomas.  相似文献   

5.
Guo N  Lang L  Li W  Kiesewetter DO  Gao H  Niu G  Xie Q  Chen X 《PloS one》2012,7(5):e37506
With favorable pharmacokinetics and binding affinity for α(v)β(3) integrin, (18)F-labeled dimeric cyclic RGD peptide ([(18)F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an (18)F-fluoride-aluminum complex labeled RGD tracer ([(18)F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare (68)Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin α(v)β(3). The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [(18)F]FPPRGD2, [(18)F]AlF-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (Bp(ND)?=?k(3)/k(4)) in tumor voxels. [(18)F]AlF-NOTA-PRGD2 showed comparable Bp(ND) value (3.75±0.65) with those of [(18)F]FPPRGD2 (3.39±0.84) and [(68)Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (V(T)) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [(18)F]AlF-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [(18)F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers.  相似文献   

6.
There is growing interest in small peptidomimetic α(v)β(3) integrin antagonists that are readily synthesized and characterized and can be easily handled using physiological conditions. Peptidomimetic 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine (IAC) was successfully conjugated to 1-(1-carboxy-3-carbo-t-butoxypropyl)-4,7-(carbo-tert-butoxymethyl)-1,4,7-triazacyclononane (NODA-GA(tBu)(3)) and 1-(1-carboxy-3-carbotertbutoxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA-GA(tBu)(4)) and radiolabeled with (111)In, (67)Ga and (203)Pb. Results of a radioimmunoassay demonstrated binding to purified α(v)β(3) integrin when 1-4equiv of integrin were added to the reaction. Based on this promising result, investigations are moving forward to evaluate the NODA-GA-IAC and DOTA-GA-IAC conjugates for targeting tumor associated angiogenesis and α(v)β(3) integrin positive tumors to define their PET and SPECT imaging qualities as well as their potential for delivery of therapeutic radionuclides.  相似文献   

7.
The solution chemistry and structure of the complex of the triazamacrocyclic ligand NOTP (1,4,7-triazacyclononane-1,4,7-tris(methylenephosphonate)) with Ga3+ in D2O have been investigated by 1H, 71Ga and 31P NMR spectroscopy. These NMR results show the presence of a 1:1 Ga(NOTP)3- complex, with a highly symmetrical, pseudo-octahedral geometry, possibly with a C3 axis. The 1H spectrum shows that the triazamacrocyclic chelate ring is very rigid, with all the ring protons non-equivalent. The complex is stable in aqueous solution in a wide pH range. Its high thermodynamic stability agrees well with previous results from biodistribution and gamma imaging studies in Wistar rats with 67Ga3+ chelates of triaza macrocyclic ligands, which showed that the neutral chelates 67Ga(NOTA) (where NOTA is 1,4,7-triazacyclononane-1,4,7-triacetate) and 67Ga(NOTPME) (where NOTPME is 1,4,7-triazacyclononane-1,4,7-tris(methylenephosphonate monoethylester)) have similar in vivo behaviour, with high stability and rapid renal excretion, but the high negatively charged 67Ga(NOTP)3- has a considerably slower kidney uptake and elimination.  相似文献   

8.
A straightforward labeling using generator produced positron emitting (68)Ga, which provides high quality images, may result in kit type production of PET radiopharmaceuticals and make PET examinations possible also at centers lacking accelerators. The introduction of macrocyclic bifunctional chelators that would provide fast (68)Ga-complexation at room temperature would simplify even further tracer preparation and open wide possibilities for (68)Ga-labeling of fragile and potent macromolecules. Gallium-68 has the potential to facilitate development of clinically practical PET and to promote PET technique for individualized medicine. The macrocyclic chelator, 1,4,7-triazacyclononanetriacetic acid (NOTA), and its derivative coupled to an eight amino acid residue peptide (NODAGA-TATE, [NODAGA (0), Tyr(3)]Octreotate) were labeled with (68)Ge/(68)Ga-generator produced positron emitting (68)Ga. Formation kinetics of (68)Ga-NOTA was studied as a function of pH and formation kinetics of (68)Ga-NODAGA-TATE was studied as a function of the bioconjugate concentration. The nearly quantitative radioactivity incorporation (RAI>95%) for (68)Ga-NOTA was achieved within less than 10 min at room temperature and pH 3.5. The concentrations of NODAGA-TATE required for RAI of >90% and >95% were, respectively, 2-5 and 10 microM. In both cases the purification of the (68)Ga-labeled products was not necessary since the radiochemical purity was >95% and the preparation buffer, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) is suitable for human use. In order to confirm the identity of the products, complexes comprising (nat)Ga were synthesized and analyzed by mass spectrometry. The complex was found to be stable in the reaction mixture, phosphate buffer, and human plasma during 4.5 h incubation. Free and peptide conjugated NOTA formed stable complexes with (68)Ga at room temperature within 10 min. This might be of special interest for the labeling of fragile and potent macromolecules and allow for kit type preparation of (68)Ga-based radiopharmaceuticals.  相似文献   

9.
68Ga labelled 2′-O-methyl oligoribonucleotides (anti-miR-15b) bearing one, three or seven d-galactopyranoside residues have been prepared and their distribution in healthy rats has been studied by positron emission tomography (PET). To obtain the heptavalent conjugate, an appropriately protected 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) precursor bearing a 4-[4-(4,4′-dimethoxytrityloxy)butoxy]phenyl side arm was first immobilized via a base labile linker to the support and the oligonucleotide was assembled on the detritylated hydroxyl function of this handle. A phosphoramidite building block bearing two phthaloyl protected aminooxy groups and one protected hydroxyl function was introduced into the 5′-terminus. One acetylated galactopyranoside was coupled as a phosphoramidite to the hydroxyl function, the phthaloyl protections were removed on-support and two trivalent galactopyranoside clusters were attached as aldehydes by on-support oximation. A two-step cleavage with aqueous alkali and ammonia released the conjugate in a fully deprotected form, allowing radiolabelling with 68Ga in solution. The mono- and tri-galactose conjugates were obtained in a closely related manner. In vivo imaging in rats with PET showed remarkable galactose-dependent liver targeting of the conjugates.  相似文献   

10.
Zhou Y  Kim YS  Lu X  Liu S 《Bioconjugate chemistry》2012,23(3):586-595
The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (~111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ~ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.  相似文献   

11.
Lang L  Li W  Guo N  Ma Y  Zhu L  Kiesewetter DO  Shen B  Niu G  Chen X 《Bioconjugate chemistry》2011,22(12):2415-2422
[(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [(68)Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging α(v)β(3) integrin receptors. The purpose of this study was to prepare [(18)F]FPPRGD2 [corrected] , [(18)F]FAl-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys, and muscle were similar for all three tracers, and they all showed predominant renal clearance. In conclusion, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [(18)F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]NOTA-PRGD2 are promising alternatives to [(18)F]FPPRGD2 for PET imaging of tumor α(v)β(3) integrin expression.  相似文献   

12.
A monoreactive NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) derived prochelator (1-(1-carboxy-3-carbo-tert-butoxypropyl)-4,7-(carbo-tert-butoxymethyl)-1,4,7-triazacyclononane (NODAGA(tBu)(3))) was synthesized in five steps with an overall yield of 21%. It is useful for the coupling to the N-terminus of peptides on solid phase and in solution; it was coupled to [Tyr3]-octreotide (TOC) on solid phase, and the resulting peptide, NODAGA-Tyr3-octreotide (NODAGATOC), was labeled with the radiometals 111In and 67Ga in high yields and good specific activities. [67Ga]- and [111In]-NODAGA-Tyr3-octreotide appear to be useful to visualize primary tumors and metastases which express somatostatin receptors subtype 2 (sstr2), such as neuroendocrine tumors, because of their high affinity to this receptor subtype with IC(50) = 3.5 +/- 1.6 nM and 1.7 +/- 0.2 nM, respectively. NODAGATOC could be used as a SPECT and PET tracer, when labeled with 111In, 67Ga, or 68Ga, and even for therapeutic applications. Surprisingly, [111In]-NODAGATOC shows 2 times higher binding affinity to sstr2, but also a factor of 4 higher affinity to sstr5 compared to [67Ga]-NODAGATOC. [67Ga]-NODAGATOC is very stable in serum and rat liver homogenate. There is no difference in the rate of internalization into AR4-2J rat pancreatic tumor cells; both radioligands are highly internalized, at 4 h a 3 times higher uptake compared to [111In]-DOTA-Tyr3-octreotide ([111In]-DOTATOC) was found. The biodistribution of [67Ga]-NODAGATOC in AR4-2J tumor bearing nude mice is very favorable at short times after injection; there is fast excretion from all nontarget organs except the kidneys and high uptake in sst receptor rich organs and in the AR4-2J tumor. Again it is superior to [111In]-DOTATOC in this respect. The results indicate an improved biological behavior which is likely due to the fact that an additional spacer group separates the chelate from the pharmacophoric part of the somatostatin analogue.  相似文献   

13.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

14.
Tumor blood vessels can be selectively targeted by RGD-peptides that bind to alpha(v)beta(3) integrin on angiogenic endothelial cells. By inhibiting the binding of these integrins to its natural ligands, RGD-peptides can serve as antiangiogenic therapeutics. We have prepared multivalent derivatives of the cyclic RGD-peptide c(RGDfK) by covalent attachment of the peptide to side chain amino groups of a protein. These RGDpep-protein conjugates inhibited alpha(v)beta(3)-mediated endothelial cell adhesion in vitro, while conjugates prepared with a control RAD-peptide showed no activity. Radiobinding and displacement studies with endothelial cells demonstrated an increased affinity of the RGDpep-protein conjugates compared to the free peptide, with IC(50) values ranging from 23 to 0.6 nM, depending on the amount of coupled RGDpep per protein. Compared to the parental RGD-peptide and the related RGD-peptide ligand c(RGDfV), the RGDpep-protein conjugates showed a considerable increase in affinity (IC(50) parent RGDpep: 818 nM; IC(50) c(RGDfV): 158 nM). We conclude that the conjugation of RGD-peptides to a protein, resulting in products that can bind multivalently, is a powerful approach to increase the affinity of peptide ligands for alpha(v)beta(3)/alpha(v)beta(5) integrins.  相似文献   

15.
Jia B  Liu Z  Shi J  Yu Z  Yang Z  Zhao H  He Z  Liu S  Wang F 《Bioconjugate chemistry》2008,19(1):201-210
In this report, we present in vitro and in vivo evaluation of three 111 In-labeled DTPA conjugates of a cyclic RGDfK dimer: DTPA-Bn-SU016 (SU016 = E[c(RGDfK)] 2; DTPA-Bn = 2-( p-isothioureidobenzyl)diethylenetriaminepentaacetic acid), DTPA-Bn-E-SU016 ( E = glutamic acid) and DTPA-Bn-Cys-SU016 (Cys = cysteic acid). The integrin alpha vbeta 3 binding affinities of SU016, DTPA-Bn-SU016, DTPA-Bn-E-SU016, and DTPA-Bn-Cys-SU016 were determined to be 5.0 +/- 0.7 nM, 7.9 +/- 0.6 nM, 5.8 +/- 0.6 nM, and 6.9 +/- 0.9 nM, respectively, against 125 I-c(RGDyK) in binding to integrin alpha vbeta3, suggesting that E or Cys residue has little effect on the integrin alpha vbeta3 affinity of E[c(RGDfK)] 2. It was also found that the 111 In-labeling efficiency of DTPA-Bn-SU016 and DTPA-Bn-E-SU016 is 3-5 times better than that of DOTA analogues due to fast chelation kinetics and high-yield 111 In-labeling under mild conditions (e.g., room temperature). Biodistribution studies were performed using BALB/c nude mice bearing U87MG human glioma xenografts. 111 In-DTPA-Bn-SU016, 111 In-DTPA-Bn-E-SU016, and 111 In-DTPA-Bn-Cys-SU016 all displayed rapid blood clearance. Their tumor uptake was comparable between 0.5 and 4 h postinjection (p.i.) within experimental error. 111 In-DTPA-Bn-E-SU016 had a significantly lower ( p < 0.01) kidney uptake than 111 In-DTPA-Bn-SU016 and 111 In-DTPA-Bn-Cys-SU016. The liver uptake of 111 In-DTPA-Bn-SU016 was 1.69 +/- 0.18% ID/g at 24 h p.i., while the liver uptake values of 111 In-DTPA-Bn-E-SU016 and 111 In-DTPA-Bn-Cys-SU016 were 0.55 +/- 0.11% ID/g and 0.79 +/- 0.15% ID/g at 24 h p.i., respectively. Among the three 111 In radiotracers evaluated in this study, 111 In-DTPA-Bn-E-SU016 has the lowest liver and kidney uptake and the best tumor/liver and tumor/kidney ratios. Results from metabolism studies indicated that there is little metabolism (<10%) for three 111 In radiotracers at 1 h p.i. Imaging data showed that tumors can be clearly visualized at 4 h p.i. with good contrast in the tumor-bearing mice administered with 111 In-DTPA-Bn-E-SU016. It is concluded that using a glutamic acid linker can significantly improve excretion kinetics of the 111 In-labeled E[c(RGDfK)] 2 from liver and kidneys.  相似文献   

16.
A group of novel racemic nicotinic ligands structurally related to epibatidine or epiboxidine [(±)-10-(±)-17] was synthesized through a palladium-catalyzed cross-coupling between the appropriate vinyl triflate and a range of organometallic heterocycles. The target compounds were evaluated for binding affinity at the α4β2 and α7 neuronal nicotinic receptors (nAChRs). The set of 3-pyridinyl derivatives (±)-10, (±)-11 and (±)-12 exhibited an affinity for the α4β2 nAChR subtype in the subnanomolar range (K(i) values of 0.20, 0.40 and 0.50nM, respectively) and behaved as α4β2 versus α7 subtype selective ligands. Interestingly, the epiboxidine-related dimethylammonium iodide (±)-17, which retained a good affinity for the α4β2 nAChR (K(i)=13.30nM), tightly bound also to the α7 subtype (K(i)=1.60nM), thus displaying a reversal of the affinity trend among the reference and new nicotinic ligands under investigation.  相似文献   

17.
Tumor-targeting peptides radiolabeled with positron-emitting (68)Ga are promising candidates as new noninvasive diagnostic agents for positron emission tomography (PET). The targeting peptides are tethered to a chelator that forms a stable coordination complex with Ga(3+) that is inert to dissociation of Ga(3+)in vivo. Metal complexes of macrobicyclic hexaamine "sarcophagine" (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) ligands exhibit remarkable stability as a result of the encapsulating nature of the cage amine ligand. A Ga(3+) sarcophagine complex, [Ga-(1-NH(3)-8-NH(2)-sar)](4+), has been characterized using X-ray crystallography, demonstrating that Ga(3+) is coordinated to six nitrogen atoms in a distorted octahedral complex. A bifunctional derivative of (NH(2))(2)sar, possessing two aliphatic linkers with carboxylic acid functional groups has been attached to two cyclic-RGD peptides that target the α(v)β(3) integrin receptor that is overexpressed in some types of tumor tissue. This dimeric species can be radiolabeled with (68)Ga(3+) in >98% radiochemical yield and (68)Ga(3+) does not dissociate from the ligand in the presence of transferrin, an endogenous protein with high affinity for Ga(3+). Biodistribution and micro-PET imaging studies in tumor-bearing mice indicate that the tracer accumulates specifically in tumors with high integrin expression. The high tumor uptake is coupled with low nonspecific uptake and clearance predominantly through the kidneys resulting in high-quality PET images in animal models.  相似文献   

18.
We have designed, synthesized, and tested conjugates of chemically modified luciferase siRNA (Luc-siRNA) with bi-, tri-, and tetravalent cyclic(arginine-glycine-aspartic) (cRGD) peptides that selectively bind to the αvβ3 integrin. The cellular uptake, subcellular distribution, and pharmacological effects of the cRGD-conjugated Luc-siRNAs compared to those of unconjugated controls were examined using a luciferase reporter cassette stably transfected into αvβ3 positive M21(+) human melanoma cells. The M21(+) cells exhibited receptor-mediated uptake of cRGD-siRNA conjugates but not of unconjugated control siRNA. The fluorophore-tagged cRGD-siRNA conjugates were taken up by a caveolar endocytotic route and primarily accumulated in cytosolic vesicles. The bi-, tri-, and tetravalent cRGD conjugates were taken up by M21(+) cells to approximately the same degree. However, there were notable differences in their pharmacological effectiveness. The tri- and tetravalent versions produced progressive, dose-dependent reductions in the level of luciferase expression, while the bivalent version had little effect. The basis for this divergence of uptake and effect is currently unclear. Nonetheless, the high selectivity and substantial "knock down" effects of the multivalent cRGD-siRNA conjugates suggest that this targeting and delivery strategy deserves further exploration.  相似文献   

19.
The generator-produced positron-emitting (68)Ga (T(1/2) = 68 min) is of potential interest for clinical PET. (68)Ga as a metallic cation is suitable for complexation reactions with chelators, naked or conjugated, with peptides or other macromolecules. Large (68)Ga generator eluate volumes, metal traces from the generator column material, or reaction reagents, however, disturb a fast, reliable, and quantitative labeling procedure. In this paper we describe a simple technique, based on anion exchange, aiming first, to increase the (68)Ga concentration, second to purify it from competing impurities, and third to obtain a fast and quantitative (68)Ga-labeled peptide conjugate that can be applied in humans without further purification. Within 5 min one can obtain from the original 6 mL generator eluate a 200 microL (68)Ga preparation (volume reduction by a factor 30) that is suitable for direct and quantitative labeling of peptide conjugates. DOTATOC (DOTA-D-Phe(1)-Tyr(3)-octreotide, DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was used as a test tracer for comparing the labeling properties of the different (68)Ga preparations. In combination with microwave heating, peptide conjugates of 0.5-1 nmol quantities could be labeled within 10 min with the full (68)Ga activity of a generator. Further purification of the (68)Ga-labeled peptide conjugate was no longer required since the nuclide incorporation was quantitative. The specific radioactivity (with respect to the peptide) was improved by a factor approximately 100 compared to the previously applied techniques using the original generator eluate. The commercial (68)Ge/(68)Ga generator from Obninsk in combination with this system for purification and concentration with an integrated microwave-supported labeling technology resulted in a kitlike technology for (68)Ga-tracer production. The first automated prototype using this technology is being tested.  相似文献   

20.
Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide 68Ga (T1/2 = 67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with 68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of 68Ga-DOTA-ZHER2:S1, 68Ga-NOTA-ZHER2:S1 and 68Ga-NODAGA-ZHER2:S1, as well as that of their 111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for 68Ga-DOTA-ZHER2:S1 (17.9±0.7%IA/g) was significantly higher than for both 68Ga-NODAGA-ZHER2:S1 (16.13±0.67%IA/g) and 68Ga-NOTA-ZHER2:S1 (13±3%IA/g) at 2 h after injection. 68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60±10) in comparison with both 68Ga-DOTA-ZHER2:S1 (28±4) and 68Ga-NOTA-ZHER2:S1 (42±11). The tumor-to-liver ratio was also higher for 68Ga-NODAGA-ZHER2:S1 (7±2) than the DOTA and NOTA conjugates (5.5±0.6 vs.3.3±0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for 68Ga than for 111In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with 68Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for 68Ga and 111In.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号