首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meeting a non-host: the behaviour of AM fungi   总被引:9,自引:0,他引:9  
 Arbuscular mycorrhizal (AM) fungi are obligately biotrophic organisms that live symbiotically with the roots of most plants. The establishment of a functional symbiosis between AM fungi and host plants involves a sequence of recognition events leading to the morphological and physiological integration of the two symbionts. The developmental switches in the fungi are triggered by host signals which induce changes in gene expression and a process leading to unequivocal recognition between the two partners of the symbiosis. It has been calculated that about 80% of plant families from all phyla of land plants are hosts of AM fungi. The remaining plant species are either non-mycorrhizal or hosts of mycorrhizas other than the arbuscular type. Non-host plants have been used to obtain information on the factors regulating the development of a functional symbiosis. The aim of this present review is to highlight present-day knowledge of the fungal developmental switches involved in the process of host/non-host discrimination. The following stages of the life cycle of AM fungi are analysed in detail: spore germination, presymbiotic mycelial growth, differential branching pattern and chemotropism, appressorium formation, root colonization. Accepted: 17 June 1998  相似文献   

2.
? Premise of study: This research seeks to advance understanding of conditions allowing movement of fungal pathogens among hosts. The family Clavicipitaceae contains fungal pathogens exploiting hosts across three kingdoms of life in a pattern that features multiple interkingdom host shifts among plants, animals, and fungi. The tribe Ustilaginoideae potentially represents a third origin of plant pathogenesis, although these species remain understudied. Fungal pathogens that cause ergot are linked morphologically with Clavicipitaceae, but are not yet included in phylogenetic studies. The placement of Ustilaginoideae and ergot pathogens will allow differentiation between the host habitat and host relatedness hypotheses as mechanisms of phylogenetic diversification of Clavicipitaceae. ? Methods: A multigene data set was assembled for Clavicipitaceae to test phylogenetic placement and ancestral character-state reconstructions for Ustilaginoidea virens and U. dichromonae as well as the ergot mycoparasite Cordyceps fratricida. Microscopic morphological observations of sexual and asexual states were also performed. ? Key results: Phylogenetic placement of U. virens and U. dichromonae represents a third acquisition of the plant pathogenic lifestyle in Clavicipitaceae. Cordyceps fratricida was also placed in Clavicipitaceae and recognized as a new genus Tyrannicordyceps. Ancestral character state reconstructions indicate initially infecting hemipteran insect hosts facilitates subsequent changes to a plant pathogenic lifestyle. The ancestor of T. fratricida is inferred to have jumped from grasses to pathogens of grasses. ? Conclusions: The host habitat hypothesis best explains the dynamic evolution of host affiliations seen in Clavicipitaceae and throughout Hypocreales. Co-occurrence in the same habitat has allowed for host shifts from animals to plants, and from plants to fungi.  相似文献   

3.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

4.
外生菌根菌与森林树木的相互关系   总被引:23,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

5.
6.
Interactions between plants and root‐associated fungi can affect the assembly, diversity, and relative abundances of tropical plant species. Host–symbiont compatibility and some degree of host specificity are prerequisites for these processes to occur, and these prerequisites may vary with host abundance. However, direct assessments of whether specificity of root‐associated fungi varies with host abundance are lacking. Here, in a diverse tropical forest in Los Tuxtlas, Mexico, we couple DNA metabarcoding with a sampling design that controls for host phylogeny, host age, and habitat variation, to characterize fungal communities associated with the roots of three confamilial pairs of host species that exhibit contrasting (high and low) relative abundances. We uncovered a functionally and phylogenetically diverse fungal community composed of 1,038 OTUs (operational taxonomic units with 97% genetic similarity), only 14 of which exhibited host specificity. Host species was a significant predictor of fungal community composition only for the subset of OTUs composed of putatively pathogenic fungi. We found no significant difference in the number of specialists associating with common versus rare trees, but we found that host abundance was negatively correlated with the diversity of root fungal communities. This latter result was significant for symbiotrophs (mostly arbuscular mycorrhizal fungi) and, to a lesser extent, for pathotrophs (mostly plant pathogens). Thus, root fungal communities differ between common and rare trees, which may impact the strength of conspecific negative density dependence. Further studies from other tropical sites and host lineages are warranted, given the role of root‐associated fungi in biodiversity maintenance.  相似文献   

7.
外生菌根缓解植物酸雨胁迫的机理研究进展   总被引:1,自引:0,他引:1  
张慰  陈展  邓仕槐  尚鹤 《生态学杂志》2012,31(1):200-206
森林作为陆地生态系统的主体,是酸雨污染的主要受体,酸雨对生态系统产生着巨大的影响。菌根是菌根真菌与植物营养根的共生体。外生菌根真菌与宿主植物间互惠互利,在森林生态系统中,外生菌根在维持生态系统的养分平衡和改善树木营养等方面有重要的作用。本文综述了国内外关于菌根和酸雨关系的研究,酸雨能抑制外生菌根的形成,降低其活力;但另一方面,外生菌根能够缓解酸雨造成的植物危害,提高植株对酸雨的耐受力。外生菌根主要通过以下几方面缓解酸雨胁迫:(1)菌根形态结构的物理屏蔽作用;(2)增加养分吸收,增加御酸能力;(3)增强酶活性,提高植物生存能力;(4)产生有机酸或其他物质。  相似文献   

8.
Root‐associated fungi and host‐specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root‐associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high‐throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root‐associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host‐specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host‐specific pathogens, as well as phytopathogens. Our work provides evidence that the root‐associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.  相似文献   

9.
Hypersensitive response of wheat to the Hessian fly   总被引:3,自引:0,他引:3  
Hessian flyMayetiola destructor (Say) larvae are able to obtain food from their host plant without inflicting mechanical damage to the plant surface, apparently by secreting substances which elicit release of nutrients from plant cells surrounding the feeding site. Cells of fully susceptible plants retain their normal appearances, while in resistant plants extensive areas of cellular collapse occur. These responses indicate that hypersensitivity is the basis of wheat's resistance to the Hessian fly. The fly's feeding mechanism more closely resembles that of a pathogen than of a phytophagous insect; correspondingly, both the genetic relationship and resistance mechanism of the host plant to the parasite are of the sorts commonly associated with bacterial and fungal pathogens.  相似文献   

10.
 Biological control of plant pathogens is currently accepted as a key practice in sustainable agriculture because it is based on the management of a natural resource, i.e. certain rhizosphere organisms, common components of ecosystems, known to develop antagonistic activities against harmful organisms (bacteria, fungi, nematodes etc.). Arbuscular mycorrhizal (AM) associations have been shown to reduce damage caused by soil-borne plant pathogens. Although few AM isolates have been tested in this regard, some appear to be more effective than others. Furthermore, the degree of protection varies with the pathogen involved and can be modified by soil and other environmental conditions. This prophylactic ability of AM fungi could be exploited in cooperation with other rhizospheric microbial angatonists to improve plant growth and health. Despite past achievements on the application of AM in plant protection, further research is needed for a better understanding of both the ecophysiological parameters contributing to effectiveness and of the mechanisms involved. Although the improvement of plant nutrition, compensation for pathogen damage, and competition for photosynthates or colonization/infection sites have been claimed to play a protective role in the AM symbiosis, information is scarce, fragmentary or even controversial, particularly concerning other mechanisms. Such mechanisms include (a) anatomical or morphological AM-induced changes in the root system, (b) microbial changes in rhizosphere populations of AM plants, and (c) local elicitation of plant defence mechanisms by AM fungi. Although compounds typically involved in plant defence reactions are elicited by AM only in low amounts, they could act locally or transiently by making the root more prone to react against pathogens. Current research based on molecular, immunological and histochemical techniques is providing new insights into these mechanisms. Accepted: 29 October 1996  相似文献   

11.
Paleoophiocordyceps coccophagus, a fungal parasite of a scale insect from the Early Cretaceous (Upper Albian), is reported and described here. This fossil not only provides the oldest fossil evidence of animal parasitism by fungi but also contains morphological features similar to asexual states of Hirsutella and Hymenostilbe of the extant genus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota). Because species of Hypocreales collectively exhibit a broad range of nutritional modes and symbioses involving plants, animals and other fungi, we conducted ancestral host reconstruction coupled with phylogenetic dating analyses calibrated with P.coccophagus. These results support a plant-based ancestral nutritional mode for Hypocreales, which then diversified ecologically through a dynamic process of intra- and interkingdom host shifts involving fungal, higher plant and animal hosts. This is especially evident in the families Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae, which are characterized by a high occurrence of insect pathogens. The ancestral ecologies of Clavicipitaceae and Ophiocordycipitaceae are inferred to be animal pathogens, a trait inherited from a common ancestor, whereas the ancestral host affiliation of Cordycipitaceae was not resolved. Phylogenetic dating supports both a Jurassic origin of fungal-animal symbioses within Hypocreales and parallel diversification of all three insect pathogenic families during the Cretaceous, concurrent with the diversification of insects and angiosperms.  相似文献   

12.
Arbuscular mycorrhizal (AM) symbiosis is an association between obligate biotrophic fungi and more than 80% of land plants. During the pre-symbiotic phase, the host plant releases critical metabolites necessary to trigger fungal growth and root colonization. We describe the isolation of a semipurified fraction from exudates of carrot hairy roots, highly active on germinating spores of Gigaspora gigantea, G. rosea, and G. margarita. This fraction, isolated on the basis of its activity on hyphal branching, contains a root factor (one or several molecules) that stimulates, directly or indirectly, G. gigantea nuclear division. We demonstrate the presence of this active factor in root exudates of all mycotrophic plant species tested (eight species) but not in those of nonhost plant species (four species). We negatively tested the hypothesis that it was a flavonoid or a compound synthesized via the flavonoid pathway. We propose that this root factor, yet to be chemically characterized, is a key plant signal for the development of AM fungi.  相似文献   

13.
The genus Armillaria includes harmful fungal pathogens that cause root rot and wood decay in a broad range of host plants throughout the world. The aim of this study was to detect, by means of Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers, the level of intraspecific variability within isolates of an Armillaria gallica population sampled from a Quercus spp. stand located in Gravina in Puglia, southern Italy. UPGMA cluster analysis of RAPD profiles generated by decamer primers grouped the isolates in subclusters demonstrating relatively low intraspecific genetic variability. Moreover, RAPD pattern analysis yielded clusters which did not correspond to the groups discriminated by vegetative compatibility tests performed by a previous investigation on the same population. The findings of this research pose the question of whether somatic incompatibility, which involves an undefined number of genes and alleles per gene, might still be considered an effective tool for the epidemiological studies of A. gallica , whereas molecular analyses are more useful for assessing genomic variation within the species.  相似文献   

14.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

15.
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther‐smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co‐occurrence of distinct, host‐specific anther‐smut fungi, rather than localized cross‐species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross‐species exposure to the pathogens in these plant communities showed that the anther‐smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi‐host/multi‐pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.  相似文献   

16.
Agricultural productivity suffers a heavy loss due to plant pathogens, insect pests and various abiotic stresses. Agriculture being the world’s largest economic sector, it is the need of time to find and establish the ideal strategy for sustainable agriculture and improvement in crop growth. Endophytes are microorganisms that asymptomatically grow within the plant tissues without causing any disease to the host. Endophytic fungi live in symbiotic association with plants and play an important role in plant growth promotion, higher seed yield and plants resistant to various biotic, abiotic stresses and diseases. Many are able to produce antimicrobial compounds, plant growth hormones and various agrochemical bioactive metabolites. These mycoendophytes hold enormous potential for the development of eco-friendly and economically viable agricultural products. In this review we focused on the endophytic fungi recovered from different medicinal plants, their active principles involved in plant growth enhancement and the applications of fungal endophytes in agriculture. Moreover, we also discussed about endophytic fungi and their pragmatic approach towards sustainable food and agriculture.  相似文献   

17.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

18.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

19.
Parasitic plants in the Orobanchaceae invade host plant roots through root organs called haustoria. Parasite roots initiate haustorium development when exposed to specific secondary metabolites that are released into the rhizosphere by host plant roots. While molecular approaches are increasingly being taken to understand the genetic mechanism underlying these events, a limitation has been the lack of a transformation system for parasitic plants. Since the haustorium development occurs in roots of Orobanchaceae, root cultures may be suitable material for transient or stable transformation experiments. To this end, root cultures were obtained from explants, and subsequently calluses, from the hemiparasitic plant Triphysaria versicolor. The cultured roots retained their competence to form haustoria when exposed to host roots, host root exudates, or purified haustorium-inducing factors. The root culture haustoria invaded host roots and initiated a vascular continuity between the parasite and host roots. The ontogeny of haustoria development on root cultures was indistinguishable from that on seedlings roots. Root cultures should provide useful material for molecular studies of haustorium development.  相似文献   

20.
Schardl CL  Craven KD 《Molecular ecology》2003,12(11):2861-2873
Fungi (kingdom Mycota) and oomycetes (kingdom Stramenopila, phylum Oomycota) are crucially important in the nutrient cycles of the world. Their interactions with plants sometimes benefit and sometimes act to the detriment of humans. Many fungi establish ecologically vital mutualisms, such as in mycorrhizal fungi that enhance nutrient acquisition, and endophytes that combat insects and other herbivores. Other fungi and many oomycetes are plant pathogens that devastate natural and agricultural populations of plant species. Studies of fungal and oomycete evolution were extraordinarily difficult until the advent of molecular phylogenetics. Over the past decade, researchers applying these new tools to fungi and oomycetes have made astounding new discoveries, among which is the potential for interspecific hybridization. Consequences of hybridization among pathogens include adaptation to new niches such as new host species, and increased or decreased virulence. Hybrid mutualists may also be better adapted to new hosts and can provide greater or more diverse benefits to host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号