首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
BAY-k 8644, a nifedipine analogue, promotes Ca2+ influx into excitable cells via plasma membrane voltage-sensitive Ca2+ channels. We report here that sarcoplasmic reticulum (SR) Ca2+ release channels are insensitive to BAY-k 8644, as studied in highly purified isolated fractions and in chemically skinned fibers of rabbit skeletal muscle. This result suggests that a subcellular heterogeneity exists among Ca2+ channels, at least with respect to drug-receptor sites. In the course of this study, however we found that BAY-k 8644 reversibly inhibits the SR Ca2+ pump, i.e., it decreases Ca2+ influx into the SR lumen, although at concentrations (IC50 = 3-5 X 10(-5) M) much higher than those effective on voltage-sensitive Ca2+ channels.  相似文献   

3.
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.  相似文献   

4.
The possibility that inositol 1,4,5-trisphosphate (IP3) may act as a Ca2+-mobilizing second messenger in cardiac muscle in a manner analogous to its actions in other cell types has been examined using saponin-permeabilized myocytes and isolated cardiac sarcoplasmic reticulum. Myocytes permeabilized in the presence of MgATP2- sequestered Ca2+ to a level of about 200 nM, similar to the cytosolic free Ca2+ concentration of intact cells, but addition of IP3 was ineffective in causing Ca2+ release from intracellular stores. Similarly, IP3 (up to 50 microM) was unable to inhibit Ca2+ uptake or cause Ca2+ release from isolated canine cardiac sarcoplasmic reticulum vesicles in the presence of either EGTA or sodium vanadate. These results indicate that IP3 is unlikely to mediate mobilization of intracellular Ca2+ stores in myocardial cells.  相似文献   

5.
The effect of DIP (an oxidant of glutathione) on 45Ca2+ net uptake induced by a variety of stimulators of insulin secretion was studied in rat pancreatic islets. In addition the effect of exogenous glutathione (GSH) on 45Ca2+ net uptake in response to glucose was tested. DIP (0.1 mM) inhibited the increase of 45Ca2+ net uptake in the presence of glucose (16.7 mM) and glyceraldehyde (10 mM). A similar inhibitory effect could be demonstrated, when 45Ca2+ net uptake was enhanced by tolbutamide (100 micrograms/ml), glibenclamide (0.5 micrograms/ml), b-BCH (20 mM), 2-ketoisocaproate (20 mM), arginine (20 mM) in the presence of 3 mM glucose or by high extracellular potassium (20 mM). The increase of 45Ca2+ net uptake stimulated by leucine (20 mM) plus glucose (3 mM) was further augmented by DIP. Exogenous GSH did not affect 45Ca2+ net uptake in the presence of (5.6-16.7 mM) glucose. It is suggested that 45Ca2+ net uptake of pancreatic islets depends on the redox state of islet thiols regardless of whether uptake is promoted via inhibition of potassium efflux (nutrients, sulfonylureas) or by high potassium and arginine. The voltage sensitive calcium-channel is the site of action of critical thiols. It is possible that these thiols are localized at the inner side of the plasma membrane.  相似文献   

6.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

7.
8.
Zhang SY  Liu G  Wang DL  Guo XJ  Qian GS 《生理学报》2001,53(3):219-223
研究不同频率慢性电刺激(CES)后兔膈肌肌浆网(SR)Ca^2 -ATPase活性以及SRC^2 摄取-释放动力学对不同频率CES的活应性变化,建立不同频率CES组,用定磷法测定SR Ca^2 -ATPaes活性,用Fura-2荧光法测定SR Ca^2 摄取-释放动力学,与对照组比较,慢性低频电刺激10Hz和20Hz组的SR Ca^2 -ATPase活性明显降低(P<0.01),Ca^2 释放-摄动力学也显著降低(P<0.01),慢性高频电刺激50Hz和100Hz组的SRCa^2 -ATPase活性则显著升高(P<0.01),Ca^2 释放-摄取动力学亦明显升高(P<0.01),实验提示,ECS后不同频率CES导致膈肌SRCa^2 -ATPase,Ca^2 摄取-释放动力学产生不同的适应性变化,对不同功能状态的膈应用不同频谱的慢性电刺激可能具有重要的临床意义。  相似文献   

9.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

10.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

11.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

12.
13.
Injections of cytosolic preparations from mammalian sperm into oocytes have been shown to trigger calcium [Ca2+]i oscillations and initiate activation of development. Recently, a protein isolated from hamster sperm has been suggested to be involved in the generation of these oscillations and it was named "oscillin." The human homologue of hamster oscillin is glucosamine 6-phosphate isomerase (GPI, EC no. 5.3.1.10), an enzyme so far described to be involved in hexose phosphate metabolism. To assess the role of GPI on Ca2+ signaling, a human recombinant protein was generated in a prokaryotic system and injected into fura-2-dextran-loaded metaphase II (MII) mouse oocytes. Injection of recombinant GPI failed to induce Ca2+ responses in 12/12 injected MII oocytes despite the fact that the recombinant GPI was active as assessed by an enzymatic assay. Injection of buffer (0/6 oocytes) or fructose-6-phosphate, a product of GPI enzymatic reaction (0/5 oocytes), also failed to initiate Ca2+ responses. Conversely, injections of sperm cytosolic factor induced [Ca2+]i oscillations in all 17/17 oocytes. In addition, injection of recombinant GPI or GPI mRNA failed to induce parthenogenetic activation (0/30 oocytes). Immunofluorescence studies using an anti-GPI polyclonal antibody (GK) resulted in localization of GPI to the sperm's equatorial region. Incubation of the GK antibody with sperm extracts failed to block the [Ca2+]i responses induced by these extracts. Moreover, near complete depletion of GPI from sperm fractions by immunoprecipitation did not impair the ability of these fractions to induce [Ca2+]i oscillations. In summary, our results support the role of a sperm cytosolic component(s) in the generation of [Ca2+]i oscillations during mammalian fertilization, although a protein other than GPI/oscillin is likely to be the active calcium releasing factor.  相似文献   

14.
Several Ca2+-mobilizing agents were tested for their potential to elicit the net release of prostaglandins from the isolated perfused rat liver. Among these ATP and UTP only led to an efficient stimulation of PGD2 and PGE2 synthesis. 20 microM ATP or 20 microM UTP increased the release of PGD2 8-fold and that of PGE2 2 to 3-fold. In total, at least 40 times more PGD2 than PGE2 left the liver after stimulation. The time course of prostaglandin release was similar for both nucleotides. Vasopressin had almost no effect on the release of both prostaglandins and on portal vein pressure. But phenylephrine and nerve stimulation while raising the PGD2 efflux only slightly caused an elevation of PGE2 outflow and portal pressure.  相似文献   

15.
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号