首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To maximize nitrogen utilization rates during nitrification and denitrification in a simultaneous reaction for direct nitrogen removal from ammonia–nitrogen in a single reactor, two different carriers were applied that immobilized nitrifiers and denitrifiers separately. With the optimized DO concentration and mixing ratio of immobilization carriers, ammonium–nitrogen was successfully removed as designed until the middle phase of treatment where nitrogen removal rate was higher than 83% of the theoretical value, although an imbalance between nitrification and denitrification occurred at a later phase of treatment where residual nitrate–nitrogen concentration was less than 2 mg/l. The new approach using two different carriers to immobilize nitrifiers and denitrifiers separately was proved useful for controlling both nitrification and denitrification rates, enabling the utilization of maximum treatment ability of both nitrifiers and denitrifiers in a single reactor for direct nitrogen removal from ammonium–nitrogen.  相似文献   

2.
研究不同土地利用方式下氮循环相关微生物在不同土壤剖面的分布,可为认识和理解土壤氮转化过程提供科学依据。土壤氨氧化微生物和反硝化微生物在调节氮肥利用率、硝态氮淋溶和氧化亚氮(N2O)排放等方面有着重要作用。以北京郊区农田和林地两种土地利用方式为研究对象,分析土壤氨氧化潜势和亚硝酸盐氧化潜势在0—100 cm土壤剖面上的季节分布(春季和秋季),并通过实时荧光定量PCR方法表征土壤氨氧化和反硝化微生物的时空分布特征。结果表明,农田土壤氨氧化潜势、亚硝酸盐氧化潜势、氨氧化微生物和反硝化微生物丰度均显著高于林地土壤,且随土壤深度增加而显著降低。除氨氧化古菌amoA基因丰度在不同季节间无显著差异外,春季土壤氨氧化细菌(amoA基因)、反硝化微生物nirS、nirK和典型nosZ I基因的丰度均显著高于秋季。土壤有机质、总氮、NH~+4-N、NO~-3-N含量与氨氧化微生物和反硝化微生物的功能基因丰度显著相关。综上,不同土地利用方式下土壤氮循环相关微生物的丰度与土壤氮素的可利用性和转化过程紧密相关,研究结果对土壤氮素利用和养分管理提供...  相似文献   

3.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

4.
Thiosphaera pantotropha is capable of simultaneous heterotrophic nitrification and aerobic denitrification. Consequently, its nitrification potential could not be judged from nitrite accumulation, but was estimated from complete nitrogen balances. The maximum rate of nitrification obtained during these experiments was 93.9 nmol min−1 mg of protein−1. The nitrification rate could be reduced by the provision of nitrate, nitrite, or thiosulfate to the culture medium. Both nitrification and denitrification increased as the dissolved oxygen concentration fell, until a critical level was reached at approximately 25% of air saturation. At this point, the rate of (aerobic) denitrification was equivalent to the anaerobic rate. At this dissolved oxygen concentration, the combined nitrification and denitrification was such that cultures receiving ammonium as their sole source of nitrogen appeared to become oxygen limited and the nitrification rate fell. It appeared that, under carbon-and energy-limited conditions, a high nitrification rate was correlated with a reduced biomass yield. To facilitate experimental design, a working hypothesis for the mechanism behind nitrification and denitrification by T. pantotropha was formulated. This involved the basic assumption that this species has a “bottleneck” in its cytochrome chain to oxygen and that denitrification and nitrification are used to overcome this. The nitrification potential of other heterotrophic nitrifiers has been reconsidered. Several species considered to be “poor” nitrifiers also simultaneously nitrify and denitrify, thus giving a falsely low nitrification potential.  相似文献   

5.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

6.
Mixed culture hydrogenotrophic nitrate reduction in drinking water   总被引:2,自引:0,他引:2  
Isolation and identification of the bacteria from a hydrogenotrophic reactor for the denitrification of drinking water revealed that several microorganisms are involved. Acinetobacter sp., Aeromonas sp., Pseudomonas sp. and Shewanella putrefaciens were repeatedly isolated from the hydrogenotrophic sludge and postulated to be of primary importance in the process. Nitrate reduction to nitrite appears to be a property of a diverse group of organisms. Nitrite reduction was found to be stimulated by the presence of organic growth factors. Thus, in a mixed culture, hydrogenotrophic denitrification reactor, NO inf2 sup– formed by NO inf3 sup– -reducers can be converted by true denitrifiers thriving on organic growth factors either present in the raw water, or excreted by the microbial community. Mixotrophic growth also contributes to NO inf2 sup– reduction. Finally, chemolithotrophic bacteria participate in the nitrite to nitrogen gas conversion.Offprint requests to: W. Verstraete.  相似文献   

7.
Here I describe how losses of fixed nitrogen can occur in riparian zones by the activity of denitrifying bacteria associated with methane-oxidizing (methanotrophic) bacteria. Several methanotrophs catalyze nitrogen cycle processes that can occur in riparian buffer zones, including nitrification and nitrogen fixation. Methanotrophs can produce nitric and nitrous oxides during oxidation of ammonium (nitrification), but they cannot carry out denitrification. However, there is good evidence that denitrifying bacteria can be associated with methanotrophs and can use simple carbon compounds released by the methanotrophs as substrates for the denitrification reactions and for growth. Evidence is presented that denitrifiers isolated from methanotrophic gel-stabilized oxygen gradient systems can use methanol, formaldehyde, and formate, all methane oxidation intermediates, to support their denitrification. Such denitrification associated with methanotrophs can release dinitrogen and so contributes to losses of fixed nitrogen, and may also produce the important atmospheric trace gases nitric and nitrous oxides. Data presented also show that some methanotrophs produce nitrogen oxides, including nitrite, nitric oxide, and nitrous oxide, during growth on nitrate. Assimilatory reduction of nitrate appears to be a requirement for the release of these products.  相似文献   

8.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

9.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

10.
Summary Seasonal and diurnal variations in sediment-water fluxes of O2, NO 3 , and NH 4 + as well as rates of nitrification, denitrification, and nitrate ammonification were determined in two different coastal lagoons of southern France: The seagrass (Zostera noltii) dominated tidal Bassin d'Arcachon and the dystrophic Etang du Prévost. Overall, denitrification rates in both Bassin d'Arcachon (<0.4 mmol m–2 d–1) and Etang du Prévost (<1 mmol m–2 d–1) were low. This was mainly caused by a combination of low NO 3 concentrations in the water column and a low nitrification activity within the sediment. In both Bassin d'Arcachon and Etang du Prévost, rates of nitrate ammonification were quantitatively as important as denitrification.Denitrification played a minor role as a nitrogen sink in both systems. In the tidal influenced Bassin d'Arcachon, Z. noltii was quantitatively more important than denitrification as a nitrogen sink due to the high assimilation rates of the plants. Throughout the year, Z. noltii stabilized the mudflats of the bay by its well- developed root matrix and controlled the nitrogen cycle due to its high uptake rates. In contrast, the lack of rooted macrophytes, and dominance of floating macroalgae, made nitrogen cycling in Etang du Prévost more unstable and unpredictable. Inhibition of nitrification and denitrification during the dystrophic crisis in the summer time increased the inorganic nitrogen flux from the sediment to the water column and thus increased the degree of benthic-pelagic coupling within this bay. During winter, however, benthic microalgae colonizing the sediment surface changed the sediment in the lagoon from being a nitrogen source to the over lying water to being a sink due to their high assimilation rates. It is likely, however, that this assimilated nitrogen is liberated to the water column at the onset of summer thereby fueling the extensive growth of the floating macroalgae, Ulva sp. The combination of a high nitrogen coupling between sediment and water column, little water exchange and low denitrification rates resulted in an unstable system with fast growing algal species such as phytoplankton and floating algae.  相似文献   

11.
Marine sponges constitute major parts of coral reefs and deep‐water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm?3 sponge day?1 were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia‐oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite‐oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes (15NO3 and 15NH4+) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm?3 sponge day?1 and 3 nmol N cm?3 sponge day?1 respectively. Accordingly, sequences closely related to ‘Candidatus Scalindua sorokinii’ and ‘Candidatus Scalindua brodae’ were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge–microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as so far unrecognized nitrogen sinks in the ocean. In certain marine environments with high sponge cover, sponge‐mediated nitrogen mineralization processes might even be more important than sediment processes.  相似文献   

12.
Recous  S.  Fresneau  C.  Faurie  G.  Mary  B. 《Plant and Soil》1988,112(2):205-214
Labelled urea or ammonium nitrate was applied to winter wheat growing on a loamy soil in Northern France. Two applications of fertilizer were given: 50 kg N ha–1 at tillering (early March) and 110 kg N ha–1 at the beginning of stem elongation (mid-April). The kinetics of urea hydrolysis, nitrification of ammonium and the disappearance of inorganic nitrogen were followed at frequent intervals. Inorganic nitrogen soon disappeared, mainly immobilized by soil microflora and absorbed by the crop. Net immobilization of fertilizer N occured at a very similar rate for urea and ammonium nitrate. Maximum immobilization (16 kg N ha1) was found at harvest for the first dressing and at anthesis for the second dressing (23 kg N ha1). During the nitrification period, the labelled ammonium pool was immobilized two to three times faster than the labelled nitrate pool. No significant net15N remineralization was found during the growth cycle.The actual denitrification and volatilization losses were probably more important than indicated from calculations made by extrapolation of fluxes measured over short intervals. However microbial immobilization was the most important of the processes which compete with plant uptake for nitrogen.  相似文献   

13.
We developed a dynamic model to predict nitrogen removal in water hyacinth ponds (WHPs) receiving effluent from waste stabilization ponds (WSPs). The model is based on the biofilm reaction on the root surface of plant and pond walls. The model consists of mass balances of six main substrates including: particulate organic nitrogen (PON), dissolved organic nitrogen (DON), ammonium (NH4+), nitrite and nitrate (NOx), soluble chemical oxygen demand (SCOD), and particulate chemical oxygen demand (PCOD). The model, incorporating major nitrogen transformation mechanisms such as hydrolysis, mineralization, and nitrification–denitrification, accounts also for carbon consumption and plant uptake. The model's application to a pilot plant showed good agreement between measured and predicted values. According to the modeling results, in the WHPs, nitrification and denitrification were the predominant nitrogen removal processes occurring simultaneously. Temperature and hydraulic retention time (HRT) had a profound effect on the performance of nitrogen removal while an algae biomass (PCOD) accumulated in the WHPs, was a useful carbon source for denitrification.  相似文献   

14.
15.
This paper describes both qualitative and quantitative aspects of simultaneous autotrophic nitrification and heterotrophic denitrification by, respectively, the nitrifierNitrisomonas europaea and either of the denitrifiersPseudomonas denitrificans orParacoccus denitrificans co-immobilized in double-layer gel beads. The system is based on the establishment of well-defined oxic and anoxic zones within the cell supports and on physical separation of the nitrifying and denitrifying populations. Nitrification and denitrification rates were obtained from measured bulk concentrations and head-space analysis. The latter analyses showed that ammonia was primarily converted into molecular nitrogen. Nitrous oxide was not detected. High nitrogen removal rates (up to 5.1 mmol N m–3 gel s–1) were achieved in continuous reactors under aerobic conditions. The overall rate of nitrogen removal was controlled by the nitrifying step. The approach followed is, in principle, also suitable to the coupling of other oxidative and reductive bioprocesses having complementary metabolic routes. Two-stage bioconversion processes can be thus conducted as if single-staged, which results in more compact reactor systems.  相似文献   

16.
Summary In an investigation on the conversion of amino acids in percolated soils, it was found that during the breakdown of glutamic acid to ammonia micro-organisms developed in the soil capable of denitrifying nitrite and nitrate to gaseous nitrogen. The enrichment of a soil with these micro-organisms was studied.Drying of the enriched soil had a deleterious effect on the activity of these micro-organisms.The interaction between denitrification and soil nitrification processes was studied in soil subjected to various percolation treatments. When the denitrifying micro-organisms and their metabolites were present in the soil the amount of nitrogen lost by denitrification depended on the availability of nitrite and nitrate. When this was supplied externally, in glutamate—nitrite or glutamate—nitrate mixtures, considerable reduction occurred. Losses were less severe where nitrite and nitrate entered the system internall y by nitrification of the ammonia produced from the breakdown of the amino acid. In fresh soils there were indications that the amount of nitrification occurring during amino-acid breakdown was the important factor.All the data appeared to be consistent with the hypothesis that during the conversion of amino acids in soils a delicate balance is established between nitrification and denitrification reactions by different types of soil micro-organisms.  相似文献   

17.
Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH 4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40–50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5–40 times higher than those of other bacteria with the same ability.  相似文献   

18.
Seasonal variation in uptake and regeneration of ammonium and nitrate in a coastal lagoon was studied using 15N incorporation in particulate matter and by measuring changes in particulate nitrogen. Uptake and regeneration rates were two orders of magnitude lower in winter than in summer. Summer uptake values were 2.8 and 2.2 mol N.l–1.d–1 for ammonium and nitrate, respectively. Regeneration rates were 2.9 and 2.1 mol N.l–1.d–1 for ammonium and nitrate respectively. Regeneration/uptake ratios were often below one, indicating that water column processes were not sufficient to satisfy the phytoplankton nitrogen demand. This implies a role of other sources of nitrogen, such as macrofauna (oysters and epibionts) and sediment. Phytoplankton was well adapted to the seasonal variations in resources, with mixotrophic dinoflagellates dominant in winter, and fast growing diatoms in summer. In winter and spring, ammonium was clearly preferred to nitrate as a nitrogen source, but nitrate was an important nitrogen source in summer because of high nitrification rates. Despite low nutrient levels, the high rates of nitrogen regeneration in summer as well as the simultaneous uptake of nitrate and ammonium allow high phytoplankton growth rates which in turn enable high oyster production.  相似文献   

19.
The effects of urinary chloride and nitrogen concentration and osmotic pressure on the nitrification of ammonium in a calcareous soil treated with cow urine were examined. Urinary chloride concentrations of up to 7.4 g L–1 had no effect on the rate of nitrification, as determined by the accumulation of soil nitrate. Osmotic stress, generated using a mixed salt solution, had an inhibitory effect on nitrification at soil osmotic pressures lower than or equal to –1.0 PMa. Nitrification was completely inhibited at a soil osmotic pressure of –2.6 MPa. Accumulation of nitrate after a lag phase of 18 days was noted in the –2.0 MPa soil osmotic pressure treatment, indicating some degree of adaptation or osmo-regulation within the nitrifying population at this stress level. High urine-N concentrations resulted in considerable nitrite accumulations and reduced nitrification activity through the effect of free ammonia. It is concluded that in most temperate grassland soils at near-neutral pH, urinary chloride and nitrogen are unlikely to reduce nitrification rates, except where urine-N concentrations exceed 16 g N L–1. Inhibition due to osmotic stress will be directly related to soil moisture status and may be particularly severe in dry, light-textured soils.  相似文献   

20.
Summary The influence of total nitrification to nitrate or partial nitrification to nitrite on the soil organic nitrogen status was examined. NH 4 +15N was added to the soil in the absence and the presence of NaClO3, respectively nitrapyrin. The first chemical inhibits only nitrate formation, the second inhibits total nitrification. The accumulation of nitrite nitrogen in the soil at levels up to 5 mg kg–1 increased the loss of nitrogen. Yet, it did not increase the binding of mineral nitrogen into soil organic matter, relative to the control soil. The data suggest that the biochemistry of the nitrite formation process, rather than the levels of nitrite ions formed, are of primary importance in the role of nitrification mediated nitrosation of soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号