首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.  相似文献   

2.
Potato plants (Solanum tuberosum L.) were grown in water culturein a controlled environment. Cooling (+8°C) of individualtubers decreased their growth rates and increased the growthrates of non-cooled tubers of the same plant. The carbohydrateconcentration in non-cooled and cooled tubers did not differsignificantly, but 14C-import from labelled photosynthate waslower in cooled than in non-cooled tubers. The markedly lowerconversion rate of ethanol-soluble 14C to starch in cooled,in comparison to non-cooled tubers, was not associated withsignificant differences in the in vitro activities of starchsynthase, ADPG-pyrophosphorylase and starch phosphorylase understandard assay conditions (+30°C). However, the Q10-valuesof the enzymes differed in vitro in the temperature range between30°C and 8°C, leading to a marked decrease in the activityratio of ADPG-pyrophosphorylase/starch phosphorylase in cooledtubers. In tubers differing in growth rates without manipulation, 14d after tuber initiation significant positive correlations werefound between 14C-concentration of tuber tissue and the in vitroactivities of starch synthase and ADPG-pyrophosphorylase anda significant negative correlation between 14C-concentrationand starch phosphorylase. In contrast, in tubers which wereanalysed 5 d after initiation, there were only small differencesbetween tubers in growth rate, 14C import and the activity ratioADPG-pyrophosphorylase/starch phosphorylase. From various directand indirect evidence it is concluded that the growth rate ofindividual tubers, and thus the sink strength, is at least inpart controlled by the activity of starch synthesizing enzymes. Key words: Potato tuber, cooling, starch synthesizing enzymes  相似文献   

3.
Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.  相似文献   

4.
[14C]Sucrose, [14C]glucose and [14C]fructose were introducedinto potato tubers held at 10 °C and the redistributionof label chased over a 65 d period in storage. Respiratory losseswere identical in all treatments, as was the partitioning of14C between soluble and insoluble forms. Sucrose was the predominantlabelled sugar in the tubers after 20 h, regardless of the original[14C]sugar introduced, and was loaded and distributed throughoutthe tubers by the internal phloem system. After 20 h the proportionsof labelled sugars bore no relationship to those of the unlabelledendogenous sugars. However, with time the percentage of 14Cin sucrose fell while that in glucose increased and by 65 dthe proportions of the labelled sugars more closely resembledthe endogenous pools. Fructose represented a consistently lowproportion of both the labelled and unlabelled sugars. By 21d a considerable proportion of the soluble 14C had been convertedto starch (approx. 25% of the total tuber 14C), this value remainingrelatively constant for the remainder of the storage period.Sprouts which formed on the tubers contained up to 6% of thetotal tuber 14C but less than 0.2% of the tuber dry matter.It is suggested that the bulk of the translocated [14C]sucroseentered the symplast and exchanged slowly with the bulk of thesugars in the storage cell vacuoles. [14C]sugars, phloem loading, starch, potato tuber, Solunum tuberosum, cold storage  相似文献   

5.
Translocation of Assimilates Within and Between Potato Stems   总被引:2,自引:0,他引:2  
Three aspects of translocation in potato were examined: (i)translocation within stems (ii) translocation between individualstems of a plant (iii) translocation between tubers followinginjection of 14C sucrose into a single daughter tuber. Assimilatesexported from single leaves of evenly illuminated potato stemsremained confined to the same side of the stem as the sourceleaf in a pattern consistent with the internal arrangement ofvascular bundles in the stem, and tubers borne on stolons verticallybelow the source leaf contained higher concentrations of 14Cthan those on the opposite side. Consequently 14C import intothe tubers bore little relationship to tuber growth rates. However,alteration of source/sink relations by pruning stems to a singlesouce leaf resulted in an even distribution of 14C throughoutthe vascular bundles of the stem and 14C import into the tubersbore a stronger relationship to tuber growth rates than to thephyllotactic relationship of the tubers with the source leaf. Labelling one stem of a potato plant resulted in little or nomovement of 14C into tubers on other unlabelled stems. However,removal of the unlabelled stems at ground level induced a significantmovement of 14C from the labelled stem to the tubers on unlabelledstems, this movement occurring via the mother tuber. Shadingthe unlabelled stems had less effect than stem removal. 14C sucrose injected into single daughter tubers was translocatedto other tubers on the same stem and also to tubers on a secondstem at the opposite end of the mother tuber. The sucrose wasconverted to starch in these tubers. The results favour the view that each potato stem functionsas an independent unit with potential for assimilate redistributionwithin a stem but with little or no carbon exchange occurringbetween stems, unless under severely altered source/sink patterns. Assimilates, 14C, autoradiography, potato (Solanum tuberosum L.), tuber growth  相似文献   

6.
DAVIES  H. V.; VIOLA  R. 《Annals of botany》1988,61(6):689-693
The treatment of potato tubers with 150 µmol dm–3gibberellic acid (GA3) stimulated starch breakdown and hexoseaccumulation in tuber tissues and the transfer of dry matterto stems. These effects could not be accounted for by enhancedactivities of starch phosphorylase, amylase and acid invertase.Indeed enzyme activities either declined or remained relativelyconstant as starch degradation and hexose accumulation proceeded.Changes in the rate of starch depletion were related to changesin sink strength and sink type, the onset of tuber initiationin controls causing the rate of starch degradation to exceedthat in GA3-treated tissues, in which tuberization was inhibited. Solanum tuberosum L., gibberellic acid, starch breakdown  相似文献   

7.
Potato plants (Solanum tuberosum L.) were grown in water culturein a controlled environment. The growth rates of individualtubers were closely reflected by their 14C-content 20 h after14CO2 had been applied to the aerial parts of the shoot for4 h. The 14C-content of the tuber (sink strength) was significantlycorrelated to the 14C-concentration of the tuber tissue (14Cg–1 fr. wt.=sink activity). The sink activity, which differedbetween individual tubers by up to a factor of 10, was alsoclosely related to the conversion rates of 14C into the starchand the remainder as well as to the 14C-content in the ethanolsoluble fraction. This indicates the simultaneous use of photosynthatefor growth and storage in the growing tubers. No preferenceof photosynthate utilization for either of these processes couldbe detected in relation to the sink activity of the tubers.Tubers with high sink activity imported 14C-labelled photosynthateat higher rates although their tissue contained higher concentrationsof reducing sugars and sucrose than the tissue of tubers withlow sink activity. Despite the close relationship between sinkactivity and the rate of starch synthesis (14C-conversion intostarch), no significant correlation was found between sink activityand the actual starch concentration of the tissue. The applicationof zeatin riboside directly onto individual tubers increasedtheir growth rates in comparison to non-treated tubers of thesame plant. The results indicate the importance of both growthand storage processes for the regulation of sink activity inyoung potato tubers. Key words: Potato tuber, 14C-photosynthate partitioning, zeatin riboside application  相似文献   

8.
The net total uptake (sum of soluble and insoluble components)of the hexoses, D-glucose and D-fructose, into sink potato (Solanumtuberosum L.) storage parenchyma was biphasic with respect tosubstrate concentration. Analysis of radioactive products revealedthat the biphasic kinetics were composed of a linear, solublecomponent superimposed on saturating starch synthesis. In contrast,in source tuber tissue, there was negligible conversion of D-glucoseto starch and the shape of the kinetic was the result of a biphasicsoluble component. The uptake of D-fructose into source tissuewas linear with respect to substrate concentration. Uptake ofthe non-metabolizable glucose analogue, 3-oxymethyl-D-glucose(3-OMG), into both sink and source tissue, demonstrated biphasickinetics, indicating the presence of a carrier for glucose.The data demonstrate that in sink potato tubers, metabolismgreatly influences apparent uptake kinetics, the kinetics ofstarch synthesis masking the kinetics of hexose transport atthe plasmalemma. Uptake of L-glucose was linear with respectto substrate concentration, an observation consistent with thissugar not being recognized by a carrier. As in the case of sucrose, in sink tuber tissue the conversionof D-glucose and D-fructose to starch was sensitive to turgor,showing a marked optimum in external osmotica containing 300mol m–3 mannitol. The mechanisms controlling turgor-sensitivestarch synthesis in the potato tuber would, therefore, appearto be common to all three sugars. Key words: Hexose (transport), partitioning, Solanum (source, sink tubers), starch synthesis  相似文献   

9.
Potato plants (Solanum tuberosum L.) were grown in water culture.About 14 d after tuber initiation no significant differenceswere found between apical and basal tuber parts in 14C-uptakeand partitioning into various fractions from 14C-labelled photosynthate.Thus, the fresh weight of these tubers could be used as a parameterfor the sink size. The 14C-content per tuber (sink strength)20 h after 14CO2-supply to the foliage was significantly correlatedwith the tuber fresh weight. No correlation was found betweenthe 14C-concentration of the tuber (sink activity; ct. ming fr. wt.) and tuber fresh weight. Consequently, tuberfresh weight (sink size) per se must have been a factor whichinfluenced sink strength. Stolon parameters characterizing theirgrowth prior to tuber initiation (e.g. stolon volume) and theircapacity for photosynthate transport (diameter, length) weremeasured at the time of tuber initiation. Significant correlationswere found between these stolon parameters and subsequent growthof individual tubers. Anatomical studies on the proportion ofvarious tissues in the cross sectional area of stolons supportthe idea of a negative relation between growth of individualtubers and transport resistance in the phloem of the stolons.It is concluded that in the initial phase of tuber growth, mainlyfactors outside of the tuber determine its growth rate. In laterstages of tuber growth, when the sink strength increases, thecompeting strength of individual tubers for photosynthate isdominated mainly by factors within the tuber itself, such astheir sink size and sink activity. Key words: Potato tuber, sink size, tuber initiation, transport resistance  相似文献   

10.
Trans-zeatin, trans-zeatin riboside and N6-(2-isopentenyl)adenosine(i6Ado) were found to be the major cytokinins by high performanceliquid chromatographic separation and gas chromatography-massspectrometric analysis in the small tubers of sweet potato (Ipomoeabatatas Lam. cv. Minamiyutaka) with a diameter of about 5 mm.During tuber development cytokinin levels were high in tubershaving a diameter below 12 mm, minimal in tubers with a diameterof 22.5 mm, and then gradually increased as the tuber developed. The role of cytokinins in tuber development of the sweet potatois discussed. (Received May 20, 1982; Accepted August 10, 1983)  相似文献   

11.
In potato plants fast and slow growing tubers develop on thesame plant. A hypothetical causality between tuber growth rateand tuber cell number was investigated by determining the tubercell number with the aid of an automatic counting procedure.Our data show a close correlation between tuber size and cellnumber over the whole range of tuber volumes considered (3–28cm3). If the influence of tuber size on cell number is eliminatedby means of a partial correlation analysis, the cell numberof the entire tuber is not significantly correlated with itsgrowth rate. An exclusive consideration of the smaller cells(10–30 µm) in the apical tuber region, where thecell division rate in potato tubers is highest, reveals a loosebut significant partial correlation to tuber growth rate (r= 0.383, P < 0.05). The growth rate of the slow growing tubers of any potato plantmay be enhanced by removing the fast growing tubers. In thefirst few days this enhanced growth rate is not due to a stimulationof cell division rate, but rather due to cell expansion. Potato, Solanum tuberosum L., tuber growth rate, tuber cell number  相似文献   

12.
OPARKA  K. J. 《Annals of botany》1985,55(5):705-713
Potato plants were labelled with 14CO2 at six stages duringtuber bulking and changes in current assimilate partitioning(20 h after 14CO2 assimilation) were examined in relation toincreasing tuber size on a plant. There was no relationshipbetween the node of origin of a tuber and the amount of 14Cwhich entered it, and those tubers on a plant which importedthe most 14C did not all belong to the same stem. However, competitionwithin a node was evident as many tubers borne on second-orderstolons were smaller and contained significantly lower concentrationsof 14C than those on primary stolons. Two weeks after tuberinitiation there was an almost linear relationship between thefresh weights of the tubers and their 14C content but the correlationbecame less good at subsequent harvests. Within the tubers theratio of 14C starch: soluble fell over the course of the experimentand was reflected in an increase in the percentage of 14C sucroseappearing in the tubers at each harvest. At any one harvest,however, the 14C starch: soluble ratios were similar but notrelated to the rates of 14C import of the tubers. The data areconsistent with the view that sucrose is compartmentalized inpotato tubers. Assimilate, 14Carbon, potato, sugars, tuber  相似文献   

13.
The bulbils and/or tubers of seven species of yams (Dioscorea)were examined for crystal content using light microscopy andhistochemistry. Calcium oxalate crystals in the form of raphide bundles werelocalized in the parenchymatous tissues. Within starch grains,crystals of various shapes and sizes were observed. The variationin shape and sizes of the intra-amylar crystals could be exploitedfor taxonomic purposes. Calcium oxalate crystals appear to serve a storage functionin these starch grains. Yams, Dioscorea, raphides, oxalate crystals, histochemistry  相似文献   

14.
The Transport of Sugar, Water, and Ions into Developing Potato Tubers   总被引:1,自引:0,他引:1  
BAKER  D. A.; MOORBY  J. 《Annals of botany》1969,33(4):729-741
Diurnal variations in the pattern of movement of sugars, water,and ions into developing tubers of the potato (Solanum tuberosumL.) were investigated. It was demonstrated using a recordingbalance that large increases in the fresh weight of tubers occurduring a dark period of reduced transpiration. Movement of assimilated14C did not reflect similar large changes and much of the weightchange observed is considered to be fluctuations in tuber watercontent. This water was shown to be moving predominantly throughthe xylem of the stolon by introducing labelled ions, 32P and89Sr into the plants. 32P, which moves in both xylem and phloem,was transported to the tuber at a constant rate whereas 89Sr,which behaves like calcium and is relatively immobile in thephloem, only moved into the tuber during the dark period. As well as the over-all long-term diurnal fluctuations severalsmaller rapid changes were recorded in the rate of water movement.Switching from darkness to light caused a transient increasefollowed by a rapid decrease in tuber weight. Switching fromlight to darkness caused a rapid increase in tuber weight. Insome experiments small oscillations in tuber weight were recorded.The possibility of these oscillations being directly relatedto cyclic changes in transpiration is considered. The resultsare discussed in relation to solute movement within plants.  相似文献   

15.
Factors controlling growth and tuberization of axillary budsin shoots of plantlets of potato (Solarium tuberosum L.) culturedin vitro were investigated. Correlative inhibition restrainedgrowth and tuberization of the axillary buds. Exposure of intactplantlets for various periods (4 to 48 h) to low (2 or 12C)or high (30 C) temperatures as comparedto 18C, did not alleviatecorrelative inhibition. Removal of the apical part of the shoot,the roots or both was generally ineffective Elevating sucroseconcentration from 30 to 80 g dm–3 promoted tuberizationon axillary buds, and the cytokinin 6-(-dimethylallylamino)purine (2iP), alleviated correlative inhibition and enhancedtuberization in intact plantlets. In the whole plantlet mostof the tubers were formed on the basal nodes, however, oncecorrelative inhibition was eliminated by the dissection of theshoot to single node sections, tubers were formed on every axillarybud. The single most effective factor inducing tuberizationin single node sections was the growth retardant ancymidol,an inhibitor of giberellin biosynthesis. Key words: Potato, Solanum tuberosum L., in vitro tuberization, correlative inhibition  相似文献   

16.
Field-grown potatoes were subjected to N deficiency (no appliedN) or received high levels of N (240 kg N ha–1) at planting.The effects of these treatments were monitored at five stagesduring growth in terms of the allocation of photosynthate withinthe leaf, and the export and partitioning of carbon to differentsinks. N deficiency significantly raised the starch concentrationin all organs of the plants, particularly in leaves and stems,and as a consequence the total amount of starch in the canopyof the low N plants remained greater than that of the high Nplants until approx. 100 days after planting (DAP). The totalamounts of carbohydrates, protein and amino acids were calculatedfor each treatment and these values were used to derive a balancesheet for major reserves. Net losses of reserves occurred fromthe canopy in both treatments in the period 97–133 DAP,although these were shown to represent < 3 per cent of thetotal gain in tuber dry weight for the season. Partitioning of 14C assimilates was examined in whole plantsand also in single leaves. Reduced partitioning to the tubers,seen in high N plants throughout their growth, was shown tobe due to decreased percentage export by the leaf and accumulationof exported 14C by the stems. Partitioning to the tubers inlow N plants increased prior to senescence when 87 per centof the fixed 14C was exported within 24 h, 80 per cent of thisto the tubers. The equivalent values for the high N plants were77 and 60 per cent respectively. Increased percentage exportcoincided with decreased allocation to starch in the leaf, anda link between these processes is suggested. N also significantlyaltered the allocation of 14C within the leaf and may have influencedthe degradation of starch in the dark to a greater degree thanits synthesis in the light. The enzymes sucrose phosphate synthase (SPS), and starch synthasewere measured concurrently with partitioning. High N plantsshowed higher rates of activities of each of the enzymes althoughboth enzymes showed a similar pattern of development over theseason, irrespective of N treatment. The data are discussed in the light of conflicting reports concerningthe influence of N on translocation and partitioning. 14C assimilates, carbohydrates, nitrogen, potato (Solanum tuberosum L.), protein  相似文献   

17.
Kinetin-induced tuber formation was investigated with regardto the role of temperature, sucrose concentration, time of kinetinapplication, and inhibitors of protein and nucleic acid biosynthesis.Low temperatures (15°C and 20°C) failed to promote tuberformation in the absence of kinetin, and at 15°C K-inducedtuber formation was partially prevented. Similarly, sucrose concentration per se did not promote tuberformation, however, K-induced tuber formation required a 6%or greater concentration of sucrose in the medium. Stolons preincubated in K prior to incubation on a basal mediumwithout K failed to form tubers but tubers were formed if theywere incubated on a basal medium with K. In order to inducetuber formation, K is only required in the basal medium for3–4 days. Thereafter tuber formation can progress unimpairedon a basal medium only. The inhibitors of protein and nucleic acid synthesis (ACTD,PFA, 2-TU, CHL, 5-FUDR) delayed tuber formation but failed toinhibit the process. The results are discussed in relation to the possible existenceof a tuber forming hormone related to cytokinins and the possibleeffect of temperature on its action. The possibility that tuberformation may be independent of protein and nucleic acid synthesisis also discussed. 1Present address: Plant Hormone and Regulator Pioneering ResearchLab., U.S. Dept. Agric., Crops Res. Div., Beltsville, Md., U.S.A. (Received October 13, 1969; )  相似文献   

18.
The size, shape and number of starch grains have been determinedin mature pepper leaves taken from plants grown under definedconditions of daylength and irradiance. Starch grains were 0.2–7.0 µm diameter and 02–1.5µm in thickness. Grain diameter was positively relatedto daylength and the number of grains per unit leaf area inverselyrelated to daylength. Mean grain diameter was also positivelyrelated to leaf area. Analysis of starch grains from leaves having a wide range ofstarch contents showed that grain diameter was linearly relatedto leaf starch content. However, mean diameter only doubledwith a 10-fold increase in starch content. The number of grainsincreased from approximately 5 ? 1010 m–2 of leaf to over200 ? 1010 m–2 with increasing starch content. The totalsurface area of grains increased from less than 1.0 m2 m–2leaf to over 20 m2 m–2 leaf. Leaf starch grain shape and size are compatible with both efficientstorage as disc-shaped chloroplasts and the maintenance of hightotal grain surface area by increasing grain number more thandiameter. Possible mechanisms for the control of grain initiation,growth and degradation are suggested. Key words: Starch grains, size, shape, pepper leaves  相似文献   

19.
A family of immunologically identical glycoproteins with apparent molecular weights of approximately 40,000 are among the major tuber proteins of potato (Solanum tuberosum L.). These proteins, as purified by ion-exchange and affinity chromatography, have been given the trivial name `patatin.' To determine if patatin can be used as a biochemical marker to study the process of tuberization, its amount was measured in a variety of tissues by rocket immunoelectrophoresis and by enzyme-linked immunosorbent assay (ELISA).

Patatin comprises 40 to 45% of the soluble protein in tubers regardless of whether they are formed on underground stolons or from axillary buds of stem cuttings. Under normal conditions, patatin is present in only trace amounts, if at all, in leaves, stems, or roots of plants which are either actively forming tubers or which have been grown under long days to prevent tuberization. However, if tubers and axillary buds are removed, patatin can accumulate in stems and petioles. This accumulation occurred without any obvious tuber-like swelling and would occur even under long days. In all tissues containing large amounts of patatin, the other tuber proteins were also found as well as large amounts of starch.

  相似文献   

20.
MOORBY  J. 《Annals of botany》1968,32(1):57-68
The uptake and distribution of nitrogen, phosphorus, and potassiumhas been studied throughout the life of potato plants. Thereappears to be a net loss of all three elements from the plantduring emergence growth even though uptake occurs. When daughtertubers are formed they very quickly become the dominant sinkfor mineral nutrients, the concentrations of N, P, and K remainingsteady for a long period. These concentrations are maintainedin spite of decreasing rates of uptake, indicating the transferenceof mobile ions from the haulm to the growing tubers. 14C tracer experiments have shown that after tuberization thereis a greater export of recently incorporated photosynthate fromthe leaves than takes place before tuberization. There is nogood correlation between the size of individual tubers and theamount of photosynthate transported into them. This is thoughtto be because the largest tubers are not necessarily growingfaster than the smaller tubers. The most active sinks are alsomost active in converting the mobile 14C into storage compounds.The mother tuber continues to import 14C until it is detachedfrom the plant, but over much of this period there is no changein the tuber dry-weight, indicating that there is an equivalentexport from the tuber. The similarities between these distribution patterns and thosefound in tubers showing second-growth are described and theimplications with respect to the control of tuber growth discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号