首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植物MADS-box基因家族编码高度保守的转录因子,参与了包括花发育在内的多种发育进程。为阐释双子叶植物草原龙胆(Eustoma grandiflorum)花器官发育的分子调控机制,根据MADS-box基因保守序列设计简并引物,用3'-RACE方法从草原龙胆中克隆了4个花器官特异表达的MADS-box家族基因。序列和系统进化树分析表明,这4个基因分别与金鱼草DEF基因、矮牵牛FBP3基因和FBP6基因以及拟南芥SEP3基因具有很高的同源性,分别属DEF/GLO、AG-like和SEP-like亚家族。从而将这4个基因分别命名为EgDEF1、EgGLO1、EgPLE1和EgSEP3-1。推导的氨基酸序列显示,这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构域,每个基因均有其亚家族特异的C-末端功能域。基因特异性RT-PCR检测结果显示:EgDEF1在萼片、花瓣、雄蕊及胚珠中高丰度表达,在心皮中微量表达;而EgGLO1在花瓣和雄蕊中高丰度表达,在萼片中微量表达;在根、茎、叶等营养器官中均未检测到上述2个基因的表达。EgPLE1在雌蕊、心皮和胚珠中特异表达,但表达的丰度存在差异,在雄蕊中的表达有所减弱。SEP-like亚家族基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达丰度相对一致。  相似文献   

2.
The specialized reproductive functions of angiosperm pistils are dependent in part upon the regulated activation of numerous genes expressed predominantly in this organ system. To better understand the nature of these pistil-predominant gene products we have analyzed seven cDNA clones isolated from tomato pistils through differential hybridization screening. Six of the seven cDNAs represent sequences previously undescribed in tomato, each having a unique pistil- and/or floral-predominant expression pattern. The putative protein products encoded by six of the cDNAs have been identified by their similarity to sequences in the database of previously sequenced genes, with a seventh sequence having no significant similarity with any previously reported sequence. Three of the putative proteins appear to be targeted to the endomembrane system and include an endo--1,4-glucanase which is expressed exclusively in pistils at early stages of development, and proteins similar in sequence to -thionin and miraculin which are expressed in immature pistils and stamens, and in either sepals or petals, respectively. Two other clones, similar in sequence to each other, were expressed primarily in immature pistils and stamens and encode distinct proteins with similarity to leucine aminopeptidases. An additional clone, which encodes a protein similar in sequence to the enzyme hyoscyamine 6--hydroxylase and to other members of the family of Fe2+/ascorbate-dependent oxidases, was expressed at high levels in pistils, stamens and sepals, and at detectable levels in some vegetative organs. Together, these observations provide new insight into the nature and possible functional roles of genes expressed during reproductive development.  相似文献   

3.
植物MADS-box 基因家族编码高度保守的转录因子, 参与了包括花发育在内的多种发育进程。为阐释双子叶植物草原龙胆(Eustoma grandiflorum)花器官发育的分子调控机制, 根据MADS-box基因保守序列设计简并引物, 用3'-RACE方法从 草原龙胆中克隆了4个花器官特异表达的MADS-box家族基因。序列和系统进化树分析表明, 这4个基因分别与金鱼草DEF基因、矮牵牛FBP3基因和FBP6基因以及拟南芥SEP3基因具有很高的同源性, 分别属DEF/GLO、AG-like和SEP-l ike亚家族。从而将这4个基因分别命名为EgDEF1、EgGLO1、EgPLE1和EgSEP3-1。推导的氨基酸序列显示, 这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构域, 每个基因均有其亚家族特异的C-末端功能域。基因特异性RT-PCR检测结果显示: EgDEF1 在萼片、花瓣、雄蕊及胚珠中高丰度表达, 在心皮中微量表达; 而EgGLO1在花瓣和雄蕊中高丰度表达, 在萼片中微量表达; 在根、茎、叶等营养器官中均未检测到上述2个基因的表达。EgPLE1在雌蕊、心皮和胚珠中特异表达, 但表达的丰度存在差异, 在雄蕊中的表达有所减弱。SEP-like亚家族基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达丰度相对一致。  相似文献   

4.
5.
Isolation of Tissue-Specific cDNAs from Tomato Pistils   总被引:12,自引:8,他引:4       下载免费PDF全文
We have used a differential plaque hybridization screening procedure to isolate cDNA clones for genes that show elevated or exclusive expression in tomato pistils. Clones that showed maximal expression in immature pistils (premeiotic to early meiosis) and mature pistils (at anthesis) were isolated. Of nine clones that were characterized, four were found also to express at some stage of anther development. In situ hybridization experiments showed that expression of the genes we have identified is very tightly regulated both spatially and temporally within the pistil. One gene was identified that is expressed in the pistil only in the transmitting tissue of the style. A second gene was found to express exclusively in two to three cell layers of the ovules for a period of less than eight days.  相似文献   

6.
7.
8.
9.
10.
cDNA clones derived from a ripe tomato fruit cDNA library were used to investigate changes in the abundance of specific mRNAs in ripening fruit and wounded leaves. mRNAs related to one cDNA clone (pTOM 13) were expressed in both situations. This clone was used to identify homologous sequences in a tomato genomic library. Three groups of related clones that hybridised to the pTOM 13 cDNA insert were identified and subcloned into plasmid vectors. Genomic Southern analysis of tomato DNA using gene-specific DNA fragments isolated from the subcloned DNAs indicated that all pTOM 13 closely related genes had been isolated. RNA dot blot analysis with these DNA fragments as probes indicated differential expression of this small multigene family in leaves and fruit.  相似文献   

11.
Ectopic expression of OsYAB1causes extra stamens and carpels in rice   总被引:1,自引:0,他引:1  
  相似文献   

12.
Cho Y  Fernandes J  Kim SH  Walbot V 《Genome biology》2002,3(9):research0045.1-research004516

Background  

A maize array was fabricated with 5,376 unique expressed sequence tag (EST) clones sequenced from 4-day-old roots, immature ears and adult organ cDNA libraries. To elucidate organ relationships, relative mRNA levels were quantified by hybridization with embryos, three maize vegetative organs (leaf blades, leaf sheaths and roots) from multiple developmental stages, husk leaves and two types of floral organs (immature ears and silks).  相似文献   

13.
We constructed an equalized cDNA library from Arabidopsis inflorescence shoot apices including inflorescence meristem, floral meristem and flower tissue collected before stage 5 of flower development. The cDNA clones were arrayed on membranes and were differentially screened using cDNA pools from vegetative and inflorescence tissues as probes. Each clone was classified by expression specificity and expression level. By removing the clones that displayed hybridization signals, 384 out of 3264 clones in this library remained as candidates for inflorescence-specific mRNAs expressed at low levels. Sequence analysis of all selected clones indicated that 53 were identical and 120 were homologous to genes in public protein databases. The remaining 211 selected clones had no significant amino acid sequence similarities with those deduced from any reported genes, though 62 of them appeared in Arabidopsis expressed sequenced tags (ESTs). About 40% of the selected clones were novel, validating the present approach for gene discovery. Northern blot analysis of 22 randomly selected clones confirmed that most were expressed preferentially in inflorescence tissues. In addition, many clones were transcribed at relatively low levels. We demonstrate that the screening method of the present study is useful for systematic classification of cDNA species based on expression specificity.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号