首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cadmium stress on protozoan bacterivory in sewage sludge was measured by experimentally exposing sludge communities to 0 to 150 mg of Cd per liter for up to 6 h and then determining the rates of protozoan grazing on bacteria, using a double-staining technique and epifluorescence microscopy. Bacterivory was measured by incubating the sludge with fluorescently labeled bacterium-sized latex beads and directly observing ingestion of the beads and bacterial cells in the sludge by epifluorescence microscopy of preserved samples. Staining with 4',6-diamidino-2-phenylindole and acridine orange permitted the simultaneous determination of protozoan numbers and bacterivory activity as estimated by the number of bacterial cells and bacterium-sized latex beads ingested by the representative ciliate Aspidisca costata. Enumeration with latex beads proved to be an effective way of estimating bacterivory in sludges subjected to heavy-metal stress. This technique should prove useful for determining the effects of other chemical stresses on protozoan numbers and bacterivory in organic-rich environments. Although the number of protozoa declined significantly only after exposure to 100 mg of Cd per liter for 4 h, grazing, as indicated by bead ingestion, was significantly inhibited by Cd concentrations of greater than 25 mg/liter in less than 1 h, and exposure to 100 mg of Cd per liter effectively stopped protozoan grazing within 1 h of exposure. Protozoan ingestion of latex beads and bacteria was inversely correlated to Cd concentration and exposure time. The reduction of protozoan bacterivory by Cd provides a possible explanation for the increase in suspended bacteria in the effluents of metal-stressed treatment facilities.  相似文献   

2.
We have developed a procedure for preparing monodispersed, fluorescently labeled bacteria (FLB), which may be used to measure virtually instantaneous rates of protozoan bacterivory in natural waters. FLB can be prepared both from natural bacterioplankton assemblages and from clonal isolates and can be stored in frozen suspension or freeze-dried without apparent loss of fluorescence intensity. They are not toxic to protozoa and can be metabolized to support bacterivorous protozoan growth rates equal to those on the same strain of unstained, viable bacteria. In experiments comparing uptake of FLB with uptake of fluorescent latex microspheres by protozoan assemblages in a salt marsh tidal creek, we found that both pelagic oligotrichous ciliates and phagotrophic flagellates ingested FLB with a frequency 4- to 10-fold greater than they ingested the microspheres. Consequently, it appears that the use of latex microspheres leads to underestimation of protozoan bacterivory and that the FLB technique is superior for estimating instantaneous rates of in situ protozoan grazing on bacterioplankton.  相似文献   

3.
Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenicol) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [3H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. We recommend that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.  相似文献   

4.
Hydrolysis of an artificial fluorogenic substrate, 4-methylumbelliferyl-beta-N-acetylglucosaminide, has been studied in a monoculture predator-prey system with either a flagellate (Bodo saltans) or a ciliate (Cyclidium sp.) fed upon pure bacterial culture (Aeromonas hydrophila or Alcaligenes xylosoxidans). Aeromonas hydrophila produced a low-affinity beta-N-acetylglucosaminidase-like enzyme (K(m), >100 mumol liter) but Alcaligenes xylosoxidans did not. Inoculation of both bacterial strains with bacterivorous protozoa induced the occurrence of another, high-affinity, beta-N-acetylglucosaminidase-like enzyme (K(m), <0.5 mumol liter). The latter enzyme showed significant, close correlations with total grazing rates of both B. saltans (r = 0.96) and Cyclidium sp. (r = 0.89) estimated by using uptake of fluorescently labelled bacteria. Further significant correlations between several protozoan parameters and kinetic parameters of this enzyme suggest its likely protozoan origin. If both types of enzyme occurred together, they could be satisfactorily distinguished by using kinetic data analysis. Hence, measurements of beta-N-acetylglucosaminidase-like activities might be promising to use to improve estimations of protozoan bacterivory.  相似文献   

5.
A new method was developed for estimating the grazing rate of live bacteria by protists. Bacterial cells (Escherichia coli bearing plasmid pEGFP) expressing enhanced green fluorescent protein (EGFP) were used as a live bacterial tracer. Ciliates (Tetrahymena thermophila) were fed with EGFP-tagged bacterial cells, and the individual cells taken up by the ciliates were detected by epifluorescence microscopy. The EGFP fluorescence was stable during the storage of samples fixed with glutaraldehyde. Comparison of clearance rates based on the uptake of EGFP-tagged live cells and fluorescently-labeled heat-killed cells suggested that the use of heat-killed cells underestimates the clearance rates. We suggest that EGFP-tagged bacteria are a useful tracer for determining protist bacterivory in culture and aquatic environments. Received: January 22, 2001 / Accepted: October 27, 2001  相似文献   

6.
Protozoan bacterivory [via uptake of fluorescently labelledbacteria (FLB)] and production of bacteria ([3H]thymidine assay)were simultaneously measured in the mesotrophic ímovReservoir (Southern Bohemia) from April to November, 1988. Heterotrophicnanoflagellates (HNF) were mostly responsible for a greaterfraction of protozoan bacterivory during the spring period.From 10 to 23% of bacterial production was grazed daily withthe only exception of the spring peak of ciliate abundance (upto 60%). Protozoans decreased significantly during the clearwaterphase (ciliates disappeared), and thus their role in bacterivorywas negligible. Through the summer-fall period ciliates, notHNF, were the most important bacterial micrograzers. Protozoancommunity grazing balanced or even exceeded the daily bacterialproduction in August and September. Alternate fates of bacterialproduction besides protozoan grazing during the spring periodare discussed.  相似文献   

7.
Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.  相似文献   

8.
Unlike the fraction of active bacterioplankton, the fraction of active bacterivores (i.e., those involved in grazing) during a specified time period has not been studied yet. Fractions of protists actively involved in bacterivory were estimated assuming that the distributions of bacteria and fluorescently labeled bacteria (FLB) ingested by protists follow Poisson distributions. Estimates were compared with experimental data obtained from FLB uptake experiments. The percentages of protists with ingested FLB (experimental) and the estimates obtained from Poisson distributions were similar for both flagellates and ciliates. Thus, the fraction of protists actively grazing on natural bacteria during a given time period could be estimated. The fraction of protists with ingested bacteria depends on the incubation time and reaches a saturating value. Aquatic systems with very different characteristics were analyzed; estimates of the fraction of protists actively grazing on bacteria ranged from 7 to 100% in the studied samples. Some nanoflagellates appeared to be grazing on specific bacterial sizes. Evidence indicated that there was no discrimination for or against bacterial surrogates (i.e., FLB); also, bacteria were randomly encountered by bacterivorous protists during these short-term uptake experiments. These analyses made it possible to estimate the ingestion rates from FLB uptake experiments by counting the number of flagellates containing ingested FLB. These results represent the first reported estimates of active bacterivores in natural aquatic systems; also, a proposed protocol for estimating in situ ingestion rates by protists represents a significant improvement and simplification to the current protocol and avoids the tedious work of counting the number of ingested FLB per protist.  相似文献   

9.
Fate and effects of methylene chloride in activated sludge.   总被引:1,自引:0,他引:1       下载免费PDF全文
Activated sludge obtained from a municipal wastewater treatment plant was acclimated to methylene chloride at concentrations between 1 and 100 mg/liter by continuous exposure to the compound for 9 to 11 days. Acclimated cultures were shown to mineralize methylene chloride to carbon dioxide and chloride. Rates of methylene chloride degradation were 0.14, 2.3, and 7.4 mg of CH2Cl2 consumed per h per g of mixed-liquor suspended solids for cultures incubated in the presence of 1, 10, and 100 mg/liter, respectively. Concentrations of methylene chloride between 10 and 1,000 mg/liter had no significant effect on O2 consumption or glucose metabolism by activated sludge. A hypothetical model was developed to examine the significance of volatilization and biodegradation for the removal of methylene chloride from an activated sludge reactor. Application of the model indicated that the rate of biodegradation was approximately 12 times greater than the rate of volatilization. Thus, biodegradation may be the predominant process determining the fate of methylene chloride in activated sludge systems continuously exposed to the compound.  相似文献   

10.
Bacterial mortality was studied using two complementary methods between 2002 and 2004 in the two main basins (north and south) of Lake Tanganyika. The disappearance of radioactivity from the DNA of natural assemblages of bacteria previously labeled with tritiated thymidine was used to estimate the mortality due to grazing by predators (72%) and due to the cell lysis (28%). Measurements of ingestion rate of bacteria by protozoa using fluorescent micro-particles yielded protozoan grazing rates similar to those provided by the thymidine method, and showed that heterotrophic nano-flagellates were responsible for most of the grazing pressure on the bacterial community of the pelagic zone (92-99%). Bacterial cell lysis was the second process involved in bacterial mortality, ranking before ciliate grazing. Overall, bacterial mortality was balanced with bacterial production. With regard to the assessment of the trophic role of bacteria, it was estimated that c. 5-8% of the organic carbon taken up by bacteria was converted into protozoan biomass and was thus available for metazoans.  相似文献   

11.
Summary Bacterivory was detected by incorporation of 0.57 m diameter, fluorescent polystyrene beads and fluorescently labeled bacteria (FLB) in two cultured species of Cryptomonas (C. ovata and C. erosa), and a population of Cryptomonas sp in a humic, mesotrophic lake. Rates of ingestion and clearance were very low, and similar for the cultures and the in situ population. The in situ population incorporated 0.7–1.7 bacteria cell-1 h-1, thereby ingesting 0.3%–2.0% of the total bacterial numbers present in the water per day, and receiving less than 2% of its carbon content per day through bacterivory. Thus, bacterivory by Cryptomonas was quantitatively important neither as a sink for bacterial biomass, nor as a carbon source for the algal cells. Possibly, it served in the uptake of essential nutrients.  相似文献   

12.
The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant.  相似文献   

13.
Rates of bacteria ingestion by interstitial ciliates were estimated and compared to bacterial biomass and production. Investigation was carried out in the hyporheic zone of a lowland stream. FISH was applied to quantitatively determine bacteria within the ciliate's food vacuoles. To estimate bacteria ingestion rates using FISH, we had to strike a new path. When numbers of bacteria in the food vacuoles remains constant with time (bacterial digestion and ingestion are at equilibrium), ingestion rate can be estimated based on the digestion time and the average number of bacteria per cell. Ciliate community was predominantly composed of bacterivorous ciliates. FISH-signals deriving from ingested bacteria were detected in Cinetochilum margaritaceum, 'other small scuticociliates', Pleuronema spp., and Vorticella spp. Ingestion rates for these taxa were 78, 150, 86, and 38 bacteria ind(-1) h(-1), respectively. The grazing impacts on bacterial biomass and carbon production were calculated based on these ingestion rates. Ciliate grazing caused a decrease in bacterial biomass of 0.024% day(-1) and in bacterial carbon production of 1.60%. These findings suggest that interstitial ciliate grazing impact on bacteria biomass and production was too low to represent an important link in the carbon flow of the hyporheic zone under study.  相似文献   

14.
The influence of prey characteristics such as motility and size as well as of predator characteristics such as satiation and preculturing diet on the feeding process of interception feeding heterotrophic nanoflagellates was investigated. Three species of gram-negative bacteria, one species of gram-positive bacteria, two species of cyanobacteria (Synechococcus) and inert latex particles were fed as prey particles for three species of heterotrophic nanoflagellates (Spumella, Ochromonas, Cafeteria). Ingestion rates depended on the satiation of the flagellates and especially on the filling status of the food vacuoles. In addition, the ingestion rates depended on the characteristics of the food particle and were modified by pre-culturing the flagellates on either Pseudomonas putida or Bacillus subtilis. Digestion was found to be particle-specific. Cyanobacteria were excreted a few minutes after ingestion whereas heterotrophic bacteria were stored and digested in the food vacuoles. The spectrum of ingested particles is not identical to that of digested particles and thus neither the diet of the flagellates nor their impact on bacterial communities can be calculated simply from food vacuole content. "Selective digestion" could be shown to be an important selection mechanism concerning natural food particles. The digestion strategies of Cafeteria on the one hand and Spumella and Ochromonas on the other hand may be an important factor to explain protozoan species composition and succession in the field. In addition to bacterial abundance and grazing pressure by metazooplankton, the bacterial speciescomposition as well as biochemical variations within bacterial species may influence protozoan species composition and abundance.  相似文献   

15.
The influence of cell surface hydrophobicity and electrostatic charge of bacteria on grazing rates of three common species of interception-feeding nanoflagellates was examined. The hydrophobicity of bacteria isolated from freshwater plankton was assessed by using two different methods (bacterial adhesion to hydrocarbon and hydrophobic interaction chromatography). The electrostatic charge of the cell surface (measured as zeta potential) was analyzed by microelectrophoresis. Bacterial ingestion rates were determined by enumerating bacteria in food vacuoles by immunofluorescence labelling via strain-specific antibodies. Feeding rates varied about twofold for each flagellate species but showed no significant dependence on prey hydrophobicity or surface charge. Further evidence was provided by an experiment involving flagellate grazing on complex bacterial communities in a two-stage continuous culture system. The hydrophobicity values of bacteria that survived protozoan grazing were variable, but the bacteria did not tend to become more hydrophilic. We concluded that variability in bacterial cell hydrophobicity and variability in surface charge do not severely affect uptake rates of suspended bacteria or food selection by interception-feeding flagellates.  相似文献   

16.
The influence of cell surface hydrophobicity and electrostatic charge of bacteria on grazing rates of three common species of interception-feeding nanoflagellates was examined. The hydrophobicity of bacteria isolated from freshwater plankton was assessed by using two different methods (bacterial adhesion to hydrocarbon and hydrophobic interaction chromatography). The electrostatic charge of the cell surface (measured as zeta potential) was analyzed by microelectrophoresis. Bacterial ingestion rates were determined by enumerating bacteria in food vacuoles by immunofluorescence labelling via strain-specific antibodies. Feeding rates varied about twofold for each flagellate species but showed no significant dependence on prey hydrophobicity or surface charge. Further evidence was provided by an experiment involving flagellate grazing on complex bacterial communities in a two-stage continuous culture system. The hydrophobicity values of bacteria that survived protozoan grazing were variable, but the bacteria did not tend to become more hydrophilic. We concluded that variability in bacterial cell hydrophobicity and variability in surface charge do not severely affect uptake rates of suspended bacteria or food selection by interception-feeding flagellates.  相似文献   

17.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

18.
Herbivory and bacterivory by phagotrophic protists were estimated in the southern basin of the oligotrophic Lake Tanganyika at different seasons (in the rainy season in February?CMarch 2007 and in the dry season in July?CAugust 2006 and September 2007), using two independent methods: the selective inhibitor technique for assessing community grazing on picocyanobacteria (PCya) and fluorescently labelled bacteria (FLB) and Synechococcus (FLA) to estimate bacterivory and herbivory by phagotrophic nanoflagellates (NF) and ciliates. Protistan grazing impact on both heterotrophic bacteria and PCya was mainly due to NF, which contributed up to 96% of the microbial grazing. There was a clear selection of FLA by protists. PCya represented the main carbon source for both flagellates and ciliates in the mixolimnion, accounting for an average of 83% of the total carbon obtained from the ingestion of picoplanktonic organisms. Protists were the main consumers of particulate primary production (46?C74% depending on season). Significant seasonal variation of grazing rates (0.011?C0.041?h?1) was found, chiefly following variation of PCya production and biomass. Assuming a growth efficiency of 0.4, total protozoan production varied seasonally (189?C313?g?C?m?2?day?1) and was roughly half of particulate phytoplankton production. This study provides evidence that NF and PCya were tightly coupled in Lake Tanganyika and that herbivory by protists may be one of the reasons why this great lake has high productivity. Our results bring support to the idea that microbial herbivory is a major process in oligotrophic freshwater systems.  相似文献   

19.
Fluorescently-labelled bacteria (FLB) were used to study the feeding strategies of a natural assemblage of estuarine protozoans and to examine whether the protozoan grazing could account for the in situ size structure of the bacterioplankton. The FLB, DTAF-stained enterococci, ranging in volume from 0.01 to 0.30 × 10–1 µm3, were added to a natural planktonic assemblage at a density of 5.5% of the natural bacterioplankton. Initial densities (individuals ml–1) were as follows: total natural bacteria, 2.2 × 106; FLB, 1.2 × 105; pigmented flagellates, 300; colorless flagellates, 250; and ciliates, 30. FLB consumption rates were determined by examining the contents of protozoan food vacuoles, and the long-term effect of grazing (over a period of 100 hours) was determined by monitoring the decline in the FLB density in experimental vessels. The average consumption rates of FLB by pigmented flagellates were similar to those by flagellates that lacked chloroplasts (0.9 and 0.6 FLB protozoan–1 hour–1, respectively). The ciliates consumed bacteria at an average rate that was 17-fold higher (per cell) than flagellates, and they displayed a greater preference for larger bacteria than did the flagellates. FLB of the mid-size classes (0.025–0.100 µm3) were heavily grazed by the entire protozoan assemblage; the smallest (<0.025 µm3) and the largest (>0.100 µm3) FLB escaped protozoan grazing. This had a profound effect on the resulting size distribution of FLB. At the end of a 100-hour incubation, the percentage of mid-size FLB (0.025 to 0.100 µm3) decreased 2.0–2.2-fold, while the percentage of the smallest and the largest FLB increased 2.0–2.5-fold. Resultant densities of FLB were consistent with initial clearance rates determined for the protozoan groups. The grazing rates of protozoans on FLB were species-specific; whereas some species consumed FLB, others did not demonstrate bacterivory. The results suggest that protozoan grazing has a major effect on the size distribution of coastal bacterioplankton. By selectively feeding on a particular size-class of bacteria, planktonic ciliates may consume 15–90% day–1 of the standing stock of largest size classes of bacterioplankton. Thus, ciliates, which were present in low abundance in the field, could not balance the production of the entire bacterial community, but they may strongly influence the portion of the bacterial community represented by the largest bacterial class. The direct effect of flagellates (e.g., grazing) was limited to smaller bacteria.Offprint requests to: M. P. Shiaris.  相似文献   

20.
Grazing of fluorescent latex beads, bacteria, and various species of phytoplankton by Poterioochromonas malhamensis (Pringsheim) Peterfi (about 8.0 μm in diameter) was surveyed. The alga ingested fluorescent beads and various live or killed and nomnotile or motile organisms including bacteria, blue-green algae, green algae, diatoms, and chrysomonads. The size range of grazed prey was from 0.1 to 6.0 μm for latex beads and from 1.0 μm (bacteria) to about 21 μm (Carteria inverse) for organisms. As many as 17 latex beads (2.0 μm) or more than 10 Microcystis cells (5–6 μm) were ingested by a single P. malhamensis cell. Following such grazing, the cell increased in volume by up to about 30-fold. The range of cell volume of ingested prey was from 0.52 μm3 (bacteria) to about 3178 μm3(Carteria inversa). This study demonstrates for the first time that P. malhamensis is capable of grazing algae 2–3 times larger in diameter than its own cell and of grazing intact motile algae. Poterioochromonas malhamensis is an omnivorous grazer. Food vacuole formation and digestion processes were examined. The membrane that was derived from the plasma membrane and surrounded the prey disappeared sometime after ingestion. The food vacuole was then formed by successive fusion of numerous homogeneous vesicles accumulated around the prey. The prey was enclosed in a single membrane-bound food vacuole and then digested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号