首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The interactions between cytochrome c (native and [(14)C]carboxymethylated) and monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin at the air/water interface was investigated by measurements of surface radioactivity, pressure and potential. 2. On a subphase of 10mm-or m-sodium chloride, penetration of cytochrome c into egg phosphatidylcholine monolayers, as measured by an increase of surface pressure, and the number of molecules penetrating, as judged by surface radioactivity, were inversely proportional to the initial pressure of the monolayer and became zero at 20dynes/cm. The constant of proportionality was increased when the cytochrome c was carboxymethylated or decreased when the phospholipid was hydrogenated, but the cut-off point remained at 20dynes/cm. 3. Penetrated cytochrome c could be removed almost entirely by compression of the phosphatidylcholine monolayer above 20dynes/cm. 4. With phosphatidic acid and cardiolipin monolayers on 10mm-sodium chloride the binding of cytochrome c was much stronger and cytochrome c penetrated into films nearing the collapse pressure (>40dynes/cm.). The penetration was partly electrostatically facilitated, since it was decreased by carrying out the reaction on a subphase of m-sodium chloride, and the relationship between the surface pressure increment and the initial film pressure moved nearer to that observed with phosphatidylcholine. 5. Surface radioactivity determinations showed that [(14)C]carboxymethylated cytochrome c was still adsorbed on phosphatidic acid and cardiolipin monolayers after the cessation of penetration. This adsorption was primarily electrostatic in nature because it could be prevented and substantially reversed by adding m-sodium chloride to the subphase and there was no similar adsorption on phosphatidylcholine films. 6. The penetration into and adsorption on the three phospholipid monolayers was examined as a function of the pH of the subphase and compared with the state of ionization of both the phospholipid and the protein, and the area occupied by the latter at an air/water interface. 7. It is concluded that the binding of cytochrome c to phospholipids can only be partially understood by a consideration of the ionic interaction between the components and that subtle conformational changes in the protein must affect the magnitude and stability of the complex. 8. If cytochrome c is associated with a phospholipid in mitochondria then cardiolipin would fulfil the characteristics of the binding most adequately.  相似文献   

2.
The strong interaction of D-beta-hydroxybutyrate dehydrogenase with phospholipid monomolecular films is demonstrated by the surface pressure increase of a film compressed up to 33 mN/m. Although the D-beta-hydroxybutyrate apodehydrogenase was able to penetrate many phospholipid monolayers, it interacted preferentially with negatively charged monolayers such as those made from diphosphatidylglycerol. The weakest interaction was found with phosphatidylcholine, which is the reactivating phospholipid for the enzyme. These interactions were dependent on the phospholipid chain length, ionic strength, and pH. At basic pH the apoenzyme lost its specificity for negatively charged phospholipids, suggesting the deprotonation of a cationic amino acid residue of the enzyme polypeptide chain. The charge effects are in agreement with results obtained using phospholipid vesicles. Beside the electrostatic interactions, the influence of phospholipid chain length and the ionic strength indicate that D-beta-hydroxybutyrate apodehydrogenase penetrates into the hydrophobic part of the lipid interface.  相似文献   

3.
The conformations adopted by beta-casein and the total apoprotein from serum high density lipoprotein when spread at the air-water interface are compared; the monolayer data are consistent with the apoprotein being alpha-helical and the beta-casein being disordered with segments distributed in loops and trains. The penetration of these hydrophobic proteins into phosphatidylcholine monolayers in different physical states was investigated. More protein can penetrate into monolayers when they are in the liquid-expanded state; for penetration at constant total surface area the lateral compressibility of the lipid is an important factor. The charge and conformation of the polar group of the phospholipid does not have a major influence on the interaction. The mixed films of lipid and protein have a mosaic structure; probably the beta-casein is in a compressed state whereas the apoprotein is extended as alpha-helices in the plane of the interface. The chain-length depedences of the interaction of the apoprotein with phosphatidylcholine monolayers and bilayers are different; when the apoprotein binds to bilayers of shorter-chain phosphatidylcholines it alters the shape of the lipid-water interface whereas with monolayers the interface remains planar throughout.  相似文献   

4.
The conformations adopted by β-casein and the total apoprotein from serum high density lipoprotein when spread at the air-water interface are compared; the monolayer data are consistent with the apoprotein being α-helical and the β-casein being disordered with segments distributed in loops and trains. The penetration of these hydrophobic proteins into phosphatidylcholine monolayers in different physical states was investigated. More protein can penetrate into monolayers when they are in the liquid-expanded state; for penetration at constant total surface area the lateral compressibility of the lipid is an important factor. The charge and conformation of the polar group of the phospholipid does not have a major influence on the interaction. The mixed films of lipid and protein have a mosaic structure; probably the β-casein is in a compressed state whereas the apoprotein is extended as α-helices in the plane of the interface. The chain-length dependences of the interaction of the apoprotein with phosphatidylcholine monolayers and bilayers are different; when the apoprotein binds to bilayers of shorter-chain phosphatidylcholines it alters the shape of the lipid-water interface whereas with monolayers the interface remains planar throughout.  相似文献   

5.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
L K Tamm 《Biochemistry》1986,25(23):7470-7476
The interaction of the chemically synthesized 25-residue signal peptide of subunit IV of yeast cytochrome c oxidase with synthetic and natural phospholipids was studied by using a monolayer technique. Incorporation of the peptide into phospholipid monolayers was measured as surface area increase at constant surface pressure. The peptide was readily soluble in aqueous buffer, yet spontaneously inserted from an aqueous subphase into phospholipid monolayers up to limiting pressures of 30-40 mN/m. The incorporation of the positively charged peptide was strongly enhanced by the presence of negatively charged phospholipids. The molecular area of the signal peptide in monolayers was determined with a 14C-labeled signal peptide and was 560 +/- 170 A2. This is consistent with a 25-residue alpha-helical peptide incorporating with its long axis parallel to the plane of the monolayer. Incorporation isotherms into synthetic phosphatidylcholine and phosphatidylglycerol monolayers at different charge densities were analyzed in terms of a simple incorporation/binding model, involving partitioning of the peptide into the monolayer and an in-plane binding reaction of the negatively charged phospholipids to the partitioned peptide.  相似文献   

7.
Surface-active properties of ubiquinones and ubiquinols have been investigated by monomolecular-film techniques. Stable monolayers are formed at an air/water interface by the fully oxidized and reduced forms of the coenzyme; collapse pressures and hence stability of the films tend to increase with decreasing length of the isoprenoid side chain and films of the reduced coenzymes are more stable than those of their oxidized counterparts. Ubiquinone with a side chain of two isoprenoid units does not form stable monolayers at the air/water interface. Mixed monolayers of ubiquinol-10 or ubiquinone-10 with 1,2-dimyristoyl phosphatidylcholine, soya phosphatidylcholine and diphosphatidylglycerol do not exhibit ideal mixing characteristics. At surface pressures less than the collapse pressure of pure ubiquinone-10 monolayers (approx. 12mN.m(-1)) the isoprenoid chain is located substantially within the region occupied by the fatty acyl residues of the phospholipids. With increasing surface pressure the ubiquinones and their fully reduced equivalents are progressively squeezed out from between the phospholipid molecules until, at a pressure of about 35mN.m(-1), the film has surface properties consistent with that of the pure phospholipid monolayer. This suggests that the ubiquinone(ol) forms a separate phase overlying the phospholipid monolayer. The implications of this energetically poised situation, where the quinone(ol) is just able to penetrate the phospholipid film, are considered in terms of the function of ubiquinone(ol) as electron and proton carriers of energy-transducing membranes.  相似文献   

8.
We present a first study using synchrotron grazing incidence diffraction and X-ray reflectivity measurements on mixed phospholipid/peptide monolayers at the air/water interface. The thermodynamic properties of the pure and mixed monolayers were characterized using the classical film balance technique. Surface pressure/potential-area isotherms showed that the antimicrobial frog skin peptide PGLa formed a very stable monolayer with two PGLa molecules per kinetic unit and a collapse pressure of ~22 mN/m. X-ray grazing incidence diffraction indicated that the peptide-dimer formation did not lead to self-aggregation with subsequent crystallite formation. However, the scattering length density profiles derived from X-ray reflectivity measurements yield information on the PGLa monolayer that protrudes into the air phase by about 0.8 nm, suggesting that the peptide is aligned parallel to the air/water interface. The monolayers, composed of disaturated phosphatidylcholines or phosphatidylglycerols, were stable up to 60 mN/m and exhibited a first-order transition from a liquid-expanded to a liquid-condensed state around 10 mN/m. Structural details of the phospholipid monolayers in the presence and absence of PGLa were obtained from synchrotron experiments. Thereby, the X-ray data of distearoylphosphatidylcholine/PGLa can be analyzed by being composed of the individual components, while the peptide strongly perturbed the lipid acyl chain order of distearoylphosphatidylglycerol. These results are in agreement that PGLa mixes at a molecular level with negatively charged lipids, but forms separate islands in zwitterionic phosphatidylcholine monolayers and demonstrates that antimicrobial peptides can discriminate between the major phospholipid components of bacterial and mammalian cytoplasmic membranes.  相似文献   

9.
The interaction of bovine prothrombin with phospholipids was measured, using as the lipid source monolayers spread at the air-buffer interface. Fluorescence spectroscopy was implemented to determine the equilibrium concentration of free prothrombin in the aqueous subphase of the protein-monolayer suspensions, in a continuous assay system. The increase in surface pressure (pi) from the protein-monolayer adsorption was also measured and, with values of the adsorbed protein concentration (c[s]), was used to calculate dc(s)/d(pi). At a particular phosphatidylserine (PS) content of liquid-expanded (LE) phosphatidylcholine (PC)/PS monolayers, dc(s)/d(pi) was independent of the initial surface pressure (pi[i]), when this latter value exceeded 30 mN/m. However, dc(s)/d(pi) varied significantly with the relative PS content of the monolayer. Values of the equilibrium dissociation constants calculated from the concentration dependence of delta(pi) indicated that the affinity of prothrombin for LE monolayers was higher at higher PS contents and lower packing densities. The affinity of prothrombin for liquid-condensed (LC) PC/PS monolayers was found to be much weaker relative to LE monolayers of similar phospholipid composition. This approach, employing spread monolayers to study prothrombin-phospholipid binding, coupled with a simple and accurate method to determine the free protein concentration in protein-monolayer suspensions, offers significant advantages for the investigation of protein-membrane interaction. The equilibrium characteristics that describe the interaction of prothrombin with the different phospholipid monolayers under various conditions also provide support for previous results which indicated that hydrophobic interactions are involved in the adsorption of vitamin K-dependent coagulation and anticoagulation proteins to model membrane systems.  相似文献   

10.
Pulmonary surfactant contains two families of hydrophobic proteins, SP-B and SP-C. Both proteins are thought to promote the formation of the phospholipid monolayer at the air-fluid interface of the lung. The Wilhelmy plate method was used to study the involvement of SP-B and SP-C in the formation of phospholipid monolayers. The proteins were either present in the phospholipid vesicles which were injected into the subphase or included in a preformed phospholipid monolayer. In agreement with earlier investigators, we found that SP-B and SP-C, present in phospholipid vesicles, were able to induce the formation of a monolayer, as became apparent by an increase in surface pressure. However, when the proteins were present in a preformed phospholipid monolayer (20 mN/m) at similar lipid to protein ratios, the rate of surface pressure increase after injection of pure phospholipid vesicles into the subphase at similar vesicle concentrations was 10 times higher. The process of phospholipid insertion from phospholipid vesicles into the protein-containing monolayers was dependent on (1) the presence of (divalent) cations, (2) the phospholipid concentration in the subphase, (3) the size of the phospholipid vesicles, (4) the protein concentration in the preformed monolayer, and (5) the initial surface pressure at which the monolayers were formed. Both in vesicles and in preformed monolayers, SP-C was less active than SP-B in promoting the formation of a phospholipid monolayer. The use of preformed monolayers containing controlled protein concentrations may allow more detailed studies on the mechanism by which the proteins enhance phospholipid monolayer formation from vesicles.  相似文献   

11.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidy[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipids by apolipoprotein C-III. The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface. Although apolipoprotein A-I and arginine-rich protein gave surface pressure increases, phospholipid was only slightly removed fromthe interface by the addition of liposomes. Based on these findings, we conclude that the apolipoproteins C interact specifically with phosphatidylcholine at the interface. This interaction is important as it relates to the transfer of the apolipoproteins C and phospholipids from very low density lipoproteins to other plasma lipoproteins. The addition of human plasma high density lipoproteins or very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of phosphatidyl[14C]choline from the interface 3--4 fold. Low density lipoproteins did not affect the rate of decrease. During lipolysis of very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of with the lipid monolayer. Lipolysis experiments were performed in a monolayer trough containing a surface film of egg phosphatidyl[14C]choline and a subphase of very low density lipoproteins and bovine serum albumin. Lipolysis was initiated by the addition of purified milk lipoprotein lipase to the subphase. As a result of lipolysis, there was a decrease in surface radioactivity of phosphatidylcholine. The pre-addition of high density lipoproteins decreased the rate of decrease in surface radioactivity...  相似文献   

12.
The major phospholipid exchange protein from bovine brain catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between rat liver microsomes and sonicated liposomes. The effect of liposomal lipid composition on the transfer of these phospholipids has been investigated. Standard liposomes contained phosphatidylcholine-phosphatidic acid (98:2, mol%); in general, phosphatidylcholine was substituted by various positively charged, negatively charged, or zwitterionic lipids. The transfer of phosphatidylinositol was essentially unaffected by the incorporation into liposomes of phosphatidic acid, phosphatidylserine, or phosphatidylglycerol (5–20 mol%) but strongly depressed by the incorporation of stearylamine (10–40 mol%). Marked stimulation (2–4-fold) of transfer activity was observed into liposomes containing phosphatidylethanolamine (2–40 mol%). The inclusion of sphingomyelin in the acceptor liposomes gave mixed results: stimulation at low levels (2–10 mol%) and inhibition at higher levels (up to 40 mol%). Cholesterol slightly diminished transfer activity at a liposome cholesterol/phospholipid molar ratio of 0.81. Similar effects were noted for the transfer to phosphatidylcholine from microsomes to these various liposomes. Compared to standard liposomes, the magnitude of Km tended to increase for liposomes which depressed phospholipid transfer and to decrease for those which stimulated; little change was observed in the values of V. Single phospholipid liposomes of phosphatidylinositol were inhibitory when added to standard liposomes.  相似文献   

13.
1. Measurements have been made of the interaction of cytochrome c, bovine serum albumin and synthetic oxytocin with low-pressure (2dyn/cm) monolayers of stearic acid, phosphatidylcholine and phosphatidylethanolamine. 2. [(14)C]Carboxymethylation of the cytochrome c and albumin followed by surface-radioactivity determinations have shown that only a proportion of the protein added to the subphase is bound to the monolayers and that initially the degree of binding is dependent on the protein concentration. The binding is irreversible in the sense that the adsorbed protein cannot be removed by transferring the film containing the interacted protein to a fresh subphase containing no protein. 3. Three successive types of interaction can usually be recognized. (a) Initially, whole molecules of protein penetrate the lipid film and occupy the same area as those of the protein spread at the air/water interface. (b) Above certain film pressures a part of each protein molecule, probably hydrophobic side chains, penetrates the film. The change in surface pressure per unit of bound protein is much smaller than in (a). (c) At higher film pressures, adsorption without penetration occurs. With cytochrome c this is initially dependent on a favourable electrostatic interaction.  相似文献   

14.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

15.
The binding characteristics of the human serum protein beta 2-glycoprotein-I, also called apolipoprotein H, with multilamellar phospholipid vesicles has been studied. It was found that beta 2-G-I is not or almost not bound to the "neutral" phospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM). The negatively charged compounds phosphatidylserine (PS) and phosphatidylinositol (PI) interact strongly with beta 2-G-I. In terms of phospholipid concentration the binding to PS is about one order of magnitude greater than to PI. The binding capacity is influenced by several parameters such as the molarity of buffer, presence of mono- or divalent cations as well as ethylenediaminotetraacetic acid (EDTA). Proteins like bovine serum albumin (BSA), human serum albumin (HSA) or horse gamma-globulin (HGG) influence the binding also in a concentration dependent manner.  相似文献   

16.
Reconstitution of rabbit thrombomodulin into phospholipid vesicles   总被引:9,自引:0,他引:9  
The influence of phospholipid on thrombin-thrombomodulin-catalyzed activation of protein C has been studied by incorporating thrombomodulin into vesicles by dialysis from octyl glucoside-phospholipid mixtures. Thrombomodulin was incorporated into vesicles ranging from neutral (100% phosphatidylcholine) to highly charged (30% phosphatidylserine and 70% phosphatidylcholine). Thrombomodulin is randomly oriented in vesicles of different phospholipid composition. Incorporation of thrombomodulin into phosphatidylcholine, with or without phosphatidylserine, alters the Ca2+ concentration dependence of protein C activation. Soluble thrombomodulin showed a half-maximal rate of activation at 580 microM Ca2+, whereas half-maximal rates of activation of liposome-reconstituted thrombomodulin were obtained between 500 microM Ca2+ and 2 mM Ca2+, depending on the composition (protein:phospholipid) of the liposomes. The Ca2+ dependence of protein C activation fits a simple hyperbola for the soluble activator, while the Ca2+ dependence of the membrane-associated complex is distinctly sigmoidal with a Hill coefficient greater than 2.4. In contrast, the Ca2+ dependence of gamma-carboxyglutamic acid (Gla) domainless protein C activation is unchanged by membrane reconstitution (1/2 max = 53 +/- 10 microM) and fits a simple rectangular hyperbola. Incorporation of thrombomodulin into pure phosphatidylcholine vesicles reduces the Km for protein C from 7.6 +/- 2 to 0.7 +/- 0.2 microM. Increasing phosphatidylserine to 20% decreased the Km for protein C further to 0.1 +/- 0.02 microM. Membrane incorporation has no influence on the activation of protein C from which the Gla residues are removed proteolytically (Km = 6.4 +/- 0.5 microM). The Km for protein C observed on endothelial cells is more similar to the Km observed when thrombomodulin (TM) is incorporated into pure phosphatidylcholine vesicles than into negatively charged vesicles, suggesting that the protein C-binding site on endothelial cells does not involve negatively charged phospholipids. In support of this concept, we observed that prothrombin and fragment 1, which bind to negatively charged phospholipids, do not inhibit protein C activation on endothelial cells or TM incorporated into phosphatidylcholine vesicles, but do inhibit when TM is incorporated into phosphatidylcholine:phosphatidylserine vesicles. These studies suggest that neutral phospholipids lead to exposure of a site, probably on thrombomodulin, capable of recognizing the Gla domain of protein C.  相似文献   

17.
The interaction of propranolol with model phospholipid membranes was studied using various experimental techniques. The partition coefficient of propranolol in the negatively charged membranes of vesicles prepared from phosphatidylserine and phosphatidic acid was found to be more than 20-times higher than in neutral phosphatidylcholine membranes. Preferential interaction of propranolol with acidic phospholipid membranes was confirmed using the monolayer compression isotherm technique and the spin-labelling method. Phosphatidylserine monolayers were markedly expanded even at a relatively low drug concentration (5 . 10(-6) M). In contrast, the effect of propranolol on phosphatidylcholine monolayers was much smaller, being detectable only at a higher concentration of the drug (1 . 10(-4) M). Spin-labeling experiments show that propranolol exerts marked ordering effect on bilayers prepared from acidic phospholipids and does not change the order parameter of phosphatidylcholine membranes. The dependence of the propranolol fluorescence spectrum on the polarity of the solvent allowed us to identify the intercalation region of the drug in the membrane. The fluorophore moiety of propranolol was found to be localized in the lipid polar head groups region of the bilayer. The role of electrostatic and hydrophobic effects in propranolol-membrane interaction is discussed and the effect of propranolol on the ordering of phospholipid bilayers is compared with the effects of other anesthetic-like molecules.  相似文献   

18.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

19.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidyl[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipid by apolipoprotein C-III.The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface.  相似文献   

20.
M D Bazzi  G L Nelsestuen 《Biochemistry》1988,27(18):6776-6783
The association of protein kinase C (PKC) with phospholipid (PL) monolayers spread at the air-water interface was examined. PKC-PL binding induced surface pressure changes that were dependent on the amount of PKC, the phospholipid composition of the monolayers, the presence of Ca2+, and the initial surface pressure of the monolayer (pi 0). Examination of surface pressure increases induced by PKC as a function of phospholipid surface pressure, pi 0, revealed that PKC-phosphatidylserine (PS) association had a critical pressure of 43 dyn/cm. Above this surface pressure, PKC cannot cause further surface pressure changes. This high critical pressure indicated that PKC should be able to penetrate many biological membranes which appear to have surface pressures of about 30 dyn/cm. PKC-induced surface pressure changes were Ca2+ dependent only for PL monolayers spread at a pi 0 greater than 26 dyn/cm. PKC alone (in the absence of PL) formed a film at the air-water interface with a surface pressure of about 26 dyn/cm. Calcium-dependent binding was studied at the higher surface pressures which effectively excluded PKC from the air-water interface. Subphase depletion measurements suggested that association of PKC with PS monolayers consisted of two stages: a rapid Ca2+-dependent interaction followed by a slower process that resulted in irreversible binding of PKC to the monolayer. The second stage appeared to involve penetration of PKC into the hydrocarbon region of the phospholipid. The commonly used in vitro substrates for PKC, histone and protamine sulfate, also associated with and penetrated PS monolayers with critical pressures of 50 and 60 dyn/cm, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号