首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.  相似文献   

2.
3.

Background

Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstream targets of the p38MAPK pathway, while MK5 can be activated by the atypical MAPK ERK3 and ERK4, protein kinase A (PKA), and maybe p38MAPK. MK2, MK3, and MK5 can phosphorylate the common substrate small heat shock protein 27 (HSP27), a modification that regulates the role of HSP27 in actin polymerization. Both stress and cAMP elevating stimuli can cause F-actin remodeling, but whereas the in vivo role of p38MAPK-MK2 in stress-triggered HSP27 phosphorylation and actin reorganization is well established, it is not known whether MK2 is involved in cAMP/PKA-induced F-actin rearrangements. On the other hand, MK5 can phosphorylate HSP27 and cause cytoskeletal changes in a cAMP/PKA-dependent manner, but its role as HSP27 kinase in stress-induced F-actin remodeling is disputed. Therefore, we wanted to investigate the implication of MK2 and MK5 in stress- and PKA-induced HSP27 phosphorylation.

Results

Using HEK293 cells, we show that MK2, MK3, and MK5 are expressed in these cells, but MK3 protein levels are very moderate. Stress- and cAMP-elevating stimuli, as well as ectopic expression of active MKK6 plus p38MAPK or the catalytic subunit of PKA trigger HSP27 phosphorylation, and specific inhibitors of p38MAPK and PKA prevent this phosphorylation. Depletion of MK2, but not MK3 and MK5 diminished stress-induced HSP27 phosphorylation, while only knockdown of MK5 reduced PKA-induced phosphoHSP27 levels. Stimulation of the p38MAPK, but not the PKA pathway, caused activation of MK2.

Conclusion

Our results suggest that in HEK293 cells MK2 is the HSP27 kinase engaged in stress-induced, but not cAMP-induced phosphorylation of HSP27, while MK5 seems to be the sole MK to mediate HSP27 phosphorylation in response to stimulation of the PKA pathway. Thus, despite the same substrate specificity towards HSP27, MK2 and MK5 are implicated in different signaling pathways causing actin reorganization.  相似文献   

4.
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.  相似文献   

5.
Lung edema during sepsis is triggered by formation of gaps between endothelial cells followed by macrophage infiltration. Endothelial gap formation has been proposed to involve changes in the structure of the actin filament cytoskeleton. Heat shock protein 27 (HSP27) is believed to modulate actin filament dynamics or structure, in a manner dependent on its phosphorylation status. We hypothesized that HSP27 may play a role in endothelial gap formation, by affecting actin dependent events in endothelial cells. As there has been no report concerning HSP27 in lung edema in vivo, we examined induction and phosphorylation of HSP27 in lung following LPS injection, as a model of sepsis. In lung, HSP27 mainly localized in capillary endothelial cells of the alveolus, and in smooth muscle cells of pulmonary arteries. HSP27 became significantly more phosphorylated at 3 h after LPS treatment, while the distribution of HSP27 remained unchanged. Pre-treatment with anti-TNFalpha antibody, which has been shown to reduce lung injury, blocked increases in HSP27 phosphorylation at 3 h. HSP27 phosphorylation was also increased in cultured rat pulmonary arterial endothelial cells (RPAEC) by treatment with TNFalpha, LPS, or H2O2. This phosphorylation was blocked by pre-treatment with SB203580, an inhibitor of the upstream kinase, p38 MAP kinase. Increased endothelial permeability caused by H2O2 in vitro was also blocked by SB203580. The amount of actin associated with HSP27 was reduced after treatment with LPS, or H2O2. In summary, HSP27 phosphorylation temporally correlated with LPS induced pathological endothelial cell gap formation in vivo and in a cell culture model system. This is the first report of increased HSP27 phosphorylation associated with pathological lung injury in an animal model of sepsis.  相似文献   

6.
We investigated how heat shock protein 27 (HSP27)and its phosphorylation are involved in the action of cholecystokinin(CCK) on the actin cytoskeleton by genetic manipulation of Chinesehamster ovary (CHO) cells stably transfected with the CCK-A receptor. In these cells, as in rat acini, CCK activated p38 mitogen-activated protein (MAP) kinase and increased the phosphorylation of HSP27. Thiseffect could be blocked with the p38 MAP kinase inhibitor SB-203580.Examination by confocal microscopy of cells stained with rhodaminephalloidin showed that CCK dose-dependently induced changes of theactin cytoskeleton, including cell shape changes, which were coincidentwith actin cytoskeleton fragmentation and formation of actin filamentpatches in the cells. To further evaluate the role of HSP27, CHO-CCK-Acells were transfected with expression vectors for either wild-type(wt) or mutant (3A, 3G, and 3D) human HSP27. Overexpression of wt-HSP27and 3D-HSP27 inhibited the effects on the actin cytoskeleton seen afterhigh-dose CCK stimulation. In contrast, overexpression ofnonphosphorylatable mutants, 3A- and 3G-HSP27, or inhibition ofphosphorylation of HSP27 by preincubation of wt-HSP27 transfected cellswith SB-203580 did not protect the actin cytoskeleton. These resultssuggest that phosphorylation of HSP27 is required to stabilize theactin cytoskeleton and to protect the cells from the effects of highconcentrations of CCK.

  相似文献   

7.
Hypoxia alters the barrier function of the endothelial cells that line the pulmonary vasculature, but underlying biophysical mechanisms remain unclear. Using rat pulmonary microvascular endothelial cells (RPMEC) in culture, we report herein changes in biophysical properties, both in space and in time, that occur in response to hypoxia. We address also the molecular basis of these changes. At the level of the single cell, we measured cell stiffness, the distribution of traction forces exerted by the cell on its substrate, and spontaneous nanoscale motions of microbeads tightly bound to the cytoskeleton (CSK). Hypoxia increased cell stiffness and traction forces by a mechanism that was dependent on the activation of Rho kinase. These changes were followed by p38-mediated decreases in spontaneous bead motions, indicating stabilization of local cellular-extracellular matrix (ECM) tethering interactions. Cells overexpressing phospho-mimicking small heat shock protein (HSP27-PM), a downstream effector of p38, exhibited decreases in spontaneous bead motions that correlated with increases in actin polymerization in these cells. Together, these findings suggest that hypoxia differentially regulates endothelial cell contraction and cellular-ECM adhesion. endothelial barrier; cytoskeleton; actin dynamics; stiffness; tensile stress  相似文献   

8.
Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.  相似文献   

9.
10.
Exposure to anthrax causes life-threatening disease through the action of the toxin produced by the Bacillus anthracis bacteria. Lethal factor (LF), an anthrax toxin component which causes severe vascular leak and edema, is a protease which specifically degrades MAP kinase kinases (MKK). We have recently shown that p38 MAP kinase activation leading to HSP27 phosphorylation augments the endothelial permeability barrier. We now show that treatment of rat pulmonary microvascular endothelial cells with anthrax lethal toxin (LeTx), which is composed of LF and the protective antigen, increases endothelial barrier permeability and gap formation between endothelial cells through disrupting p38 signaling. LeTx treatment increases MKK3b degradation and in turn decreases p38 activity at baseline as well as after activation of p38 signaling. Consequently, LeTx treatment decreases activation of the p38 substrate kinase, MK2, and the phosphorylation of the latter's substrate, HSP27. LeTx treatment disrupts other signaling pathways leading to suppression of Erk-mediated signaling, but these effects do not correlate with LeTx-induced barrier compromise. Overexpressing phosphomimicking (pm)HSP27, which protects the endothelial permeability barrier against LeTx, blocks LeTx inactivation of p38 and MK2, but it does not block MKK3b degradation or Erk inactivation. Our results suggest that LeTx might cause vascular leak through inactivating p38-MK2-HSP27 signaling and that activating HSP27 phosphorylation specifically restores p38 signaling and blocks anthrax LeTx toxicity. The fact that barrier integrity could be restored by pmHSP27 overexpression without affecting degradation of MKK3b, or inactivation of Erk, suggests a specific and central role for p38-MK2-HSP27 in endothelial barrier permeability regulation.  相似文献   

11.
Nguyen A  Chen P  Cai H 《FEBS letters》2004,572(1-3):307-313
Growing evidence suggests that reactive oxygen species such as hydrogen peroxide (H(2)O(2)) can function as important signaling molecules in vascular cells. H(2)O(2)-activated redox-sensitive pathways mediate both physiological and pathological responses given the location and concentration of H(2)O(2). We showed previously for the first time that calcium/calmodulin-dependent protein kinase II (CaMKII) is redox-sensitive in endothelial cells, mediating H(2)O(2) upregulation of endothelial nitric oxide synthase. This response is always accompanied by an elongation phenotype of endothelial cells, implying modulation of actin cytoskeleton. In the present study, we investigated the role of CaMKII in H(2)O(2) activation of p38 MAPK/heat shock protein 27 (HSP27) pathway and ERK1/2, both of which have been known to regulate actin reorganization in endothelial cells. Addition of H(2)O(2) to bovine aortic endothelial cells increased ERK1/2 phosphorylation and activity, which was attenuated by a specific inhibitor of CaMKII, KN93. KN93 also prevented H(2)O(2) activation of p38 MAPK. Transfection of endothelial cells with a CaMKII-specific inhibitory peptide (AA 281-309) reduced H(2)O(2) phosphorylation of p38 MAPK and ERK1/2. Furthermore, blockade of CaMKII or janus kinase 2 (JAK2, downstream of CaMKII) prevented H(2)O(2) activation of HSP27. KN93 attenuated, whereas AG490 (JAK2 inhibitor) abolished, H(2)O(2)-induced formation of actin stress fibers. Blockade of ERK1/2 inhibited H(2)O(2) phosphorylation of HSP27 transiently. It also partially prevented H(2)O(2) induction of actin stress fibers. In summary, redox-sensitive activation of p38 MAPK/HSP27 pathway or ERK1/2 in endothelial cells requires CaMKII. These pathways are at least partially responsible for H(2)O(2) induced reorganization of actin cytoskeleton.  相似文献   

12.
Changes in the cytoskeleton of endothelial cells (ECs) play important roles in mediating neutrophil migration during inflammation. Previous studies demonstrated that neutrophil adherence to TNF-alpha-treated pulmonary microvascular ECs induced cytoskeletal remodeling in ECs that required ICAM-1 ligation and oxidant production and was mimicked by cross-linking ICAM-1. In this study, we examined the role of ICAM-1-induced signaling pathways in mediating actin cytoskeletal remodeling. Cross-linking ICAM-1 induced alterations in ICAM-1 distribution, as well as the filamentous actin rearrangements and stiffening of ECs shown previously. ICAM-1 cross-linking induced phosphorylation of the p38 mitogen-activated protein kinase (MAPK) that was inhibited by allopurinol and also induced an increase in the activity of the p38 MAPK that was inhibited by SB203580. However, SB203580 had no effect on oxidant production in ECs or ICAM-1 clustering. ICAM-1 cross-linking also induced phosphorylation of heat shock protein 27, an actin-binding protein that may be involved in filamentous actin polymerization. The time course of heat shock protein 27 phosphorylation paralleled that of p38 MAPK phosphorylation and was completely inhibited by SB203580. In addition, SB203580 blocked the EC stiffening response induced by either neutrophil adherence or ICAM-1 cross-linking. Moreover, pretreatment of ECs with SB203580 reduced neutrophil migration toward EC junctions. Taken together, these data demonstrate that activation of p38 MAPK, mediated by xanthine oxidase-generated oxidant production, is required for cytoskeletal remodeling in ECs induced by ICAM-1 cross-linking or neutrophil adherence. These cytoskeletal changes in ECs may in turn modulate neutrophil migration toward EC junctions.  相似文献   

13.
Human immunodeficiency virus type 1 Tat exerts prominent angiogenic effects which may lead to a variety of vasculopathic conditions in AIDS patients. Because endothelial cells undergo prominent cytoskeletal rearrangement during angiogenesis, we investigated the specific effects of Tat on the endothelial cell actin cytoskeleton. Glutathione S-transferase (GST)-Tat, at a level of 200 ng/ml (equivalent to 52 ng of Tat/ml), caused stress fiber disassembly, peripheral retraction, and ruffle formation in human umbilical vein endothelial cells (HUVEC) and human lung microvascular endothelial cells. At 600 ng of GST-Tat/ml (157 ng of Tat/ml), actin structures were lost, and severe cytoskeletal collapse occurred. In contrast, GST-Tat harboring mutations within either the cysteine-rich or basic domains exerted minimal effects on the endothelial cytoskeleton. HUVEC expressing a DsRed-Tat fusion protein displayed similar actin rearrangements, followed by actin collapse, whereas neighboring nontransfected cells retained normal actin structures. Because active mutants of p21-activated kinase 1 (PAK1) induce identical changes in actin dynamics, we hypothesized that Tat exerts its cytoskeletal effects through PAK1. GST-Tat activated PAK1 within 5 min, and adenovirus delivery of a kinase-dead PAK1 [PAK1(K298A)] completely prevented cytoskeletal collapse induced by GST-Tat or DsRed-Tat and also blocked downstream activation of c-Jun N-terminal kinase. Further, GST-Tat increased phosphorylation of the NADPH oxidase subunit p47(phox) and caused its rapid redistribution to membrane ruffles. PAK1(K298A) blocked p47(phox) phosphorylation, and interference with NADPH oxidase function through superoxide scavenging or through expression of a transdominant inhibitor, p67(V204A), prevented GST-Tat-induced alterations in the actin cytoskeleton. We conclude that Tat induces actin cytoskeletal rearrangements through PAK1 and downstream activation of the endothelial NADPH oxidase.  相似文献   

14.
Tak H  Jang E  Kim SB  Park J  Suk J  Yoon YS  Ahn JK  Lee JH  Joe CO 《Cellular signalling》2007,19(11):2379-2387
The signal pathway by which 14-3-3epsilon inhibits cell migration induced by MAPK-activated protein kinase 5 (MK5) was investigated in cultured HeLa cells. Both in vivo and in vitro analyses have revealed that 14-3-3epsilon interacts with MK5. 14-3-3epsilon bound to MK5 inhibits the phosphorylation of HSP27, a known substrate of MK5. Disturbance of actin cytoskeleton organization by 14-3-3epsilon was shown in transfected cells transiently expressing 14-3-3epsilon as well as established cells stably expressing 14-3-3epsilon. Moreover, overexpression of 14-3-3epsilon resulted in the inhibition of cell migration induced by MK5 overexpression or TNFalpha treatment. Our results suggest that 14-3-3epsilon bound to MK5 inhibits cell migration by inhibiting the phosphorylation of HSP27 whose phosphorylation regulates F-actin polymerization, actin cytoskeleton organization and subsequent actinfilament dynamics.  相似文献   

15.
The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.  相似文献   

16.
In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.  相似文献   

17.
Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells.  相似文献   

18.
Actin is the major constituent of the cytoskeleton of almost all the eukaryotic cells. In vitro experiments have indicated that oxidant-stressed nonmuscle mammalian cells undergo remarkable changes in their morphology and in the structure of the actin cytoskeleton, often resulting in plasma membrane blebbing. Although the microfilament network is one of the earliest targets of oxidative stress, the mechanism by which oxidants change both the structure and the spatial organization of actin filaments is still a matter of debate and far from being fully elucidated. Starting from the 2-fold role of oxidants as injurious by-products of cellular metabolism and essential participants in cell signaling and regulation, this review attempts to gather the most relevant information related to (i) the activation of mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38) which, via MAP kinase-activated protein (MAPKAP) kinase 2/3, leads to the phosphorylation of the actin polymerization (F-actin) modulator 25/27 kDa heat shock protein (HSP25/27), whose phosphorylation is causally related to the regulation of microfilament dynamics following oxidative stress; (ii) the alteration of the redox state of actin or some actin regulatory proteins. The actin cytoskeleton response to oxidants is discussed on the basis of the growing body of evidence indicating the actin system as the most sensitive constituent of the cytoskeleton to the oxidant attack.  相似文献   

19.
In the human autoimmune blistering disease pemphigus vulgaris (PV) pathogenic antibodies bind the desmosomal cadherin desmoglein-3 (dsg3), causing epidermal cell-cell detachment (acantholysis). Pathogenic PV dsg3 autoantibodies were used to initiate desmosome signaling in human keratinocyte cell cultures. Heat shock protein 27 (HSP27) and p38MAPK were identified as proteins rapidly phosphorylated in response to PV IgG. Inhibition of p38MAPK activity prevented PV IgG-induced HSP27 phosphorylation, keratin filament retraction, and actin reorganization. These observations suggest that PV IgG binding to dsg3 activates desmosomal signal transduction cascades leading to (i) p38MAPK and HSP27 phosphorylation and (ii) cytoskeletal reorganization, supporting a mechanistic role for signaling in PV IgG-induced acantholysis. Targeting desmosome signaling via inhibition of p38MAPK and HSP27 phosphorylation may provide novel treatments for PV and other desmosome-associated blistering diseases.  相似文献   

20.
The actin- and myosin-binding protein, caldesmon (CaD) is an essential component of the cytoskeleton in smooth muscle and non-muscle cells and is involved in the regulation of cell contractility, division, and assembly of actin filaments. CaD is abundantly present in endothelial cells (EC); however, the contribution of CaD in endothelial cytoskeletal arrangement is unclear. To examine this contribution, we generated expression constructs of l-CaD cloned from bovine endothelium. Wild-type CaD (WT-CaD) and truncated mutants lacking either the N-terminal myosin-binding site or the C-terminal domain 4b (containing actin- and calmodulin-binding sites) were transfected into human pulmonary artery EC. Cell fractionation experiments and an actin overlay assay demonstrated that deleting domain 4b, but not the N-terminal myosin-binding site, resulted in decreased affinity to both the detergent-insoluble cytoskeleton and soluble actin. Recombinant WT-CaD co-localized with acto-myosin filaments in vivo, but neither of CaD mutants did. Thus both domain 4b and the myosin-binding site are essential for proper localization of CaD in EC. Overexpression of WT-CaD led to cell rounding and formation of a thick peripheral subcortical actin rim in quiescent EC, which correlated with decreased cellular migration. Pharmacological inhibition of p38 MAPK, but not ERK MAPK, caused disassembly of this peripheral actin rim in CaD-transfected cells and decreased CaD phosphorylation at Ser531 (Ser789 in human h-CaD). These results suggest that CaD is critically involved in the regulation of the actin cytoskeleton and migration in EC, and that p38 MAPK-mediated CaD phosphorylation may be involved in endothelial cytoskeletal remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号