首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu M  Reimschuessel R  Hassel BA 《Gene》2002,298(2):129-139
In mammals, the response to nephrotoxicant-induced renal injury is limited to repair of the proximal tubule by surviving epithelial cells. In contrast, bony fish are capable of both repair, and de novo production of nephrons in response to renal damage. Importantly, toxicant-induced nephron neogenesis in goldfish (Carassius auratus) parallels nephron development in the mammalian embryo, providing a vertebrate model for kidney development. We utilized this model system to identify genes induced by the renal toxicant, gentamicin, that may function in nephron neogenesis. A novel ubiquitin-like (UBL) gene, 40.1, was identified by differential display analysis of control and gentamicin-treated goldfish kidney. 40.1 was induced dramatically 3-7 days following a sublethal dose of gentamicin, and returned to basal level by 14 days post-treatment. The induction of 40.1 coincided with early renal injury in the proximal tubules of gentamicin-injected fish; however, expression was not restricted to the kidney, suggesting that 40.1 induction may be a more general response to cell injury. Sequence analysis revealed that 40.1 contains tandem UBL domains, and shares homology with ISG15, a 15 kD interferon-(IFN) stimulated UBL found in mammals. Analysis of the genome database for the pufferfish, Fugu rubrides, identified a goldfish ISG15 (gfISG15) homologue with an IFN-stimulated response element in the promoter region, providing further evidence that gfISG15 is the true teleost ISG15 orthologue. Zebrafish and catfish ISG15 genes were subsequently identified by sequence analysis. Consistent with its predicted function as a UBL, gfISG15 formed conjugates with cellular proteins in vitro and in transient transfections. Similar to the induction of mammalian ISG15 by microbial challenge, gfISG15 was induced in the spleen of mycobacteria-infected fish. These studies identified the first teleost ISG15 orthologue. The induction of gfISG15 as an early genetic event in response to a renal toxicant, and its conserved, stress-associated, expression in higher vertebrates suggests that ISG15 is an important component of the host response to diverse stress stimuli.  相似文献   

2.
Renal development in mammalian kidneys can only be studied in embryonic animals. Hence, research in this area is hampered by the need to maintain pregnant animals and by the small size of the embryonic kidney. Here, we describe a goldfish (Carassius auratus) model for studying renal repair and nephron development in an adult animal. Previous studies have indicated that chemically induced nephrotoxicosis in goldfish is followed by new nephron development. We tested the hypothesis that new nephron development is not a one-time only event and, thus, will occur after repeated nephrotoxic events. We used repeated injections of gentamicin (50 mg/kg of body weight), a nephrotoxic antibiotic, which has been used as a model nephrotoxicant to study renal repair. Fish were allowed either a recovery period of 9 or 24 weeks between injections. In both experiments, new nephrons developed after each injection of gentamicin, supporting our hypothesis. Nephron development occurring after a 9-week recovery period was similar to development observed after a 24-week recovery period; therefore, the shorter experimental paradigm appears sufficient and can save time and money. Future research using this fish nephrogenesis model may identify the genes responsible for nephron neogenesis. Such information is a prerequisite for developing alternative renal replacement therapies based on the induction of de novo nephrogenesis in diseased kidneys.  相似文献   

3.
Although renal regeneration is limited to repair of the proximal tubule in mammals, some bony fish are capable of renal regeneration through nephron neogenesis in the event of renal injury. We previously reported that nephron development in the medaka mesonephros is characterized by four histologically distinct stages, generally referred to as condensed mesenchyme, nephrogenic body, relatively small nephron, and the mature nephron. Developing nephrons are positive for wt1 expression during the first three of these stages. In the present study, we examined the regenerative response to renal injury, artificially induced by the administration of sublethal amounts of gentamicin in adult medaka. Similar to previous reports in other animals, the renal tubular epithelium and the glomerulus of the medaka kidney exhibited severe damage after exposure to this agent. However, kidneys showed substantial recovery after gentamicin administration, and a significant number of developing nephrons appeared 14 days after gentamicin administration (P < 0.01). Similarly, the expression of wt1 in developing nephrons also indicated the early stages of nephrogenesis. These findings show that medaka has the ability to regenerate kidney through nephron neogenesis during adulthood and that wt1 is a suitable marker for detecting nephrogenesis.  相似文献   

4.
Acute kidney injury (AKI) is characterized by high mortality rates from deterioration of renal function over a period of hours or days that culminates in renal failure1. AKI can be caused by a number of factors including ischemia, drug-based toxicity, or obstructive injury1. This results in an inability to maintain fluid and electrolyte homeostasis. While AKI has been observed for decades, effective clinical therapies have yet to be developed. Intriguingly, some patients with AKI recover renal functions over time, a mysterious phenomenon that has been only rudimentally characterized1,2. Research using mammalian models of AKI has shown that ischemic or nephrotoxin-injured kidneys experience epithelial cell death in nephron tubules1,2, the functional units of the kidney that are made up of a series of specialized regions (segments) of epithelial cell types3. Within nephrons, epithelial cell death is highest in proximal tubule cells. There is evidence that suggests cell destruction is followed by dedifferentiation, proliferation, and migration of surrounding epithelial cells, which can regenerate the nephron entirely1,2. However, there are many unanswered questions about the mechanisms of renal epithelial regeneration, ranging from the signals that modulate these events to reasons for the wide variation of abilities among humans to regenerate injured kidneys.The larval zebrafish provides an excellent model to study kidney epithelial regeneration as its pronephric kidney is comprised of nephrons that are conserved with higher vertebrates including mammals4,5. The nephrons of zebrafish larvae can be visualized with fluorescence techniques because of the relative transparency of the young zebrafish6. This provides a unique opportunity to image cell and molecular changes in real-time, in contrast to mammalian models where nephrons are inaccessible because the kidneys are structurally complex systems internalized within the animal. Recent studies have employed the aminoglycoside gentamicin as a toxic causative agent for study of AKI and subsequent renal failure: gentamicin and other antibiotics have been shown to cause AKI in humans, and researchers have formulated methods to use this agent to trigger kidney damage in zebrafish7,8. However, the effects of aminoglycoside toxicity in zebrafish larvae are catastrophic and lethal, which presents a difficulty when studying epithelial regeneration and function over time. Our method presents the use of targeted cell ablation as a novel tool for the study of epithelial injury in zebrafish. Laser ablation gives researchers the ability to induce cell death in a limited population of cells. Varying areas of cells can be targeted based on morphological location, function, or even expression of a particular cellular phenotype. Thus, laser ablation will increase the specificity of what researchers can study, and can be a powerful new approach to shed light on the mechanisms of renal epithelial regeneration. This protocol can be broadly applied to target cell populations in other organs in the zebrafish embryo to study injury and regeneration in any number of contexts of interest.  相似文献   

5.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.  相似文献   

6.
Microanatomy of nephrons during ontogenesis has been studied in domestic hens. In the bird kidneys, as well as in mammalian kidneys, three populations of nephrons can be detected: juxtamedullary, or deep nephrons, superficial and situating between them intracortical nephrons. In formation of the bird renal medulla only loops of the juxtamedullary nephrons participate. During ontogenesis in the kidneys of birds, like in mammalians, juxtamedullary nephrons are the first to be formed; they can be obtained from kidneys of 14-day-old chicken embryos, however, a complete formation of the nephron structure is terminated after hatching. During development the length of the juxtamedullary nephrons increases nearly by one order, while the length of the superficial and intracortical nephrons increases no more than twice. The diameter of the glomeruli in the juxtamedullary nephrons during development increases nearly twice, in the superficial and intracortical nephrons only a slight increase is noted. A relative length of the proximal canaliculus of the intracortical and superficial nephrons gradually increases during ontogenesis and practically does not change in the juxtamedullary nephrons, in them the nephron loop becomes longer. The developmental pattern in various parts of the superficial, intracortical and juxtamedullary nephrons in general features is similar in mammalians and birds.  相似文献   

7.
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771–792, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
In the kidney, a unique plasticity exists between epithelial and mesenchymal cells. During kidney development, the metanephric mesenchyme contributes to emerging epithelium of the nephron via mesenchymal to epithelial transition (MET). In the injured adult kidney, renal epithelia contribute to the generation of fibroblasts via epithelial-mesenchymal transition, facilitating renal fibrosis. Recombinant human bone morphogenic protein (BMP)-7, a morphogen that is essential for the conversion of epithelia from condensing mesenchyme during kidney development, enhances the repair of tubular structures in the kidney. In this setting, BMP-7 inhibits epithelial-mesenchymal transition involving adult renal epithelial tubular cells and decreases secretion of type I collagen by adult renal fibroblasts. In search of a mechanism behind the ability of BMP-7 to repair damaged renal tubules, we hypothesized that systemic treatment with BMP-7 might induce MET involving adult renal fibroblasts in the injured kidney, generating functional epithelial cells. Here we report that BMP-7 induces formation of epithelial cell aggregates in adult renal fibroblasts associated with reacquisition of E-cadherin expression and decreased motility, mimicking the effect of BMP-7 on embryonic metanephric mesenchyme to generate epithelium. In addition, we provide evidence that BMP-7-mediated repair of renal injury is associated with MET involving adult renal interstitial fibroblasts in mouse models for renal fibrosis. Collectively, these findings suggest that adult renal fibroblasts might retain parts of their original embryonic imprint and plasticity, which can be re-engaged by systemic administration of BMP-7 to mediate repair of tubular injury in a fibrotic kidney.  相似文献   

9.
Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.  相似文献   

10.
Previous histological evaluations of chick kidneys indicated nephrons continue to develop from embryonic foci for up to 6 weeks after hatching. The present study was conducted using an in vivo alcian blue staining technique to quantify posthatch changes in glomerular numbers and sizes in female domestic fowl at 1, 3, 5, 9, 12, 21, and 30 weeks of age. Changes in glomerular size distributions reflect changes in the heterogeneous nephron populations of avian kidneys. Foci of embryonic tissue were observed at the periphery of renal lobules up to 12 weeks of age. Glomerular numbers increased from 69,800/kidney at 1 week to 586,000/kidney at 12 weeks, with no further significant increase up to 30 weeks (599,000/kidney). The increase in glomerular number per gram kidney weight remained constant as kidney mass increased up to 12 weeks of age, after which the number of glomeruli per gram kidney weight declined significantly as kidney size increased without further addition of new nephrons. Glomerular size distribution profiles were constructed using eleven circumference categories. The peak number of glomeruli fell within the 0.11-0.14 mm category at 1 and 3 weeks; within the 0.15-0.18 mm category at 5, 9, and 12 weeks; and within the 0.19-0.22 mm category at 21 and 30 weeks. One and 3-week-old chicks had no glomeruli within the largest (greater than or equal to 0.35 mm circumference) size categories, and 9-12-week-old birds had significantly fewer glomeruli in these categories than 21-30-week-old birds. These results demonstrate that posthatch renal maturation in domestic fowl involves the ongoing formation of new nephrons up to 12 weeks of age, with subsequent kidney growth (12-30 weeks of age) accomplished by enlargement of existing nephrons (nephron hypertrophy). The cumulative evidence indicates that nephrons destined to develop loops of Henle (mammalian-type) develop first, with shorter (reptilian-type) nephrons developing later as the kidneys enlarge.  相似文献   

11.
I W Monie  J R Morgan 《Teratology》1975,11(2):143-151
The formation of cysts has been studied in kidneys removed from day-15 and day-18 rat fetuses and cultured in a mixture of medium 199 (Morgan et al., '50) for periods of up to 15 days. Gas phases of 95% O2 and 5% CO2, and 95% air and 5% CO2, were employed, the latter being considered more satisfactory. In day-15 kidneys cysts formed from the ampullary portions of the collecting tubules after 2 days whereas cysts derived from nephrons were not seen until 9 days of culturing. The latter arose from developing juxtamedullary nephrons. In day-18 kidneys cysts from collecting tubules and nephrons were both present after 3 days of culturing. The latter, in this instance, originated mostly in immature midcortical nephrons, the juxtamedullary mephrons having undergone rapid degeneration. The tubular portion of the nephron seemed to be the primary site of dilatation. Under culture conditions cysts of nephrons thus formed from immature actively developing nephrons and not from those that were mature. Cysts associated with collecting tubules arose from the ampullary (terminal) portions of the latter in both day-15 and day-18 cultured kidneys. The study of cultured mammalian fetal kidneys can provide information on the nature and genesis of renal cysts. It is possible that the same technique also may be helpful for examining the effects of teratogens directly on the kidney.  相似文献   

12.
Formation of nephrons from primitive mesenchyme in fetal kidneys is induced by ureteric buds. Nephron induction is closely coordinated with branching morphogenesis of the ureteric bud. Having previously shown that branching of the primitive ureter is associated with de novo synthesis of chondroitin sulfate proteoglycan and release of free heparan sulfate glycosaminoglycan chains, we asked whether glycosaminoglycans influence nephron development. Fetal mouse kidneys were incubated in organ cultures containing heparan sulfate, heparin, chondroitin sulfate, or hyaluronate. After 48 hr the number of nephrons at each developmental stage was enumerated by light microscopic analysis of serial tissue sections. Kidneys incubated in heparin or in heparan sulfate contained up to 10-fold fewer nephrons than did kidneys incubated in control conditions or in chondroitin sulfate or hyaluronic acid. Maturation of nephrons, however, was unaffected. Inhibition of nephron development was associated with binding of labeled heparin to primitive mesenchyme and altered tissue distribution of fibronectin. Branching morphogenesis was impaired in kidneys exposed to heparin but not to heparan sulfate or to de-N-sulfated, N-acetylated heparin. The capacity of glycosaminoglycans to inhibit nephron formation depended on sugar composition and O-sulfation but not GAG chain size or charge density. Thus, heparan sulfate may have the capacity to specifically control formation of nephrons in fetal metanephric kidneys in vitro.  相似文献   

13.
During kidney morphogenesis, the formation of nephrons begins when mesenchymal nephron progenitor cells aggregate and transform into epithelial vesicles that elongate and assume an S-shape. Cells in different regions of the S-shaped body subsequently differentiate into the morphologically and functionally distinct segments of the mature nephron. Here, we have used an allelic series of mutations to determine the role of the secreted signaling molecule FGF8 in nephrogenesis. In the absence of FGF8 signaling, nephron formation is initiated, but the nascent nephrons do not express Wnt4 or Lim1, and nephrogenesis does not progress to the S-shaped body stage. Furthermore, the nephron progenitor cells that reside in the peripheral zone, the outermost region of the developing kidney, are progressively lost. When FGF8 signaling is severely reduced rather than eliminated, mesenchymal cells differentiate into S-shaped bodies. However, the cells within these structures that normally differentiate into the tubular segments of the mature nephron undergo apoptosis, resulting in the formation of kidneys with severely truncated nephrons consisting of renal corpuscles connected to collecting ducts by an abnormally short tubular segment. Thus, unlike other FGF family members, which regulate growth and branching morphogenesis of the collecting duct system, Fgf8 encodes a factor essential for gene regulation and cell survival at distinct steps in nephrogenesis.  相似文献   

14.
In the course of aging, the renal concentrating ability is markedly reduced. This defect may result from an inappropriate synthesis of antidiuretic hormone in the central nervous system or may be due to an impaired renal response to vasopressin. The two hypotheses have been studied in vivo in rats and in vitro in mice. The results of these studies indicated that: 1) dehydration induces a comparable release of vasopressin along the hypothalamo-hypophysial axis in 10, 20 and 30 month-old rats; 2) there is no change with age of the number of nephrons, single nephron filtration rate or transport capacity of Henle's loop of cortical nephrons which could account for an impaired renal response to vasopressin; 3) the reduced concentrating ability of the kidney appears to be linked to a decreased response of the medullary thick ascending limb of Henle's loop which in part is responsible for the cortico-papillary gradient of solutes within the kidney.  相似文献   

15.
Factors which modify the excretion profiles of acute kidney injury biomarkers are difficult to measure. To facilitate biomarker choice and interpretation we modelled key modifying factors: extent of hyperfiltration or reduced glomerular filtration rate, structural damage, and reduced nephron number. The time-courses of pre-formed, induced (upregulated), and filtered biomarker concentrations were modelled in single nephrons, then combined to construct three multiple-nephron models: a healthy kidney with normal nephron number, a non-diabetic hyperfiltering kidney with reduced nephron number but maintained total glomerular filtration rate, and a chronic kidney disease kidney with reduced nephron number and reduced glomerular filtration rate. Time-courses for each model were derived for acute kidney injury scenarios of structural damage and/or reduced nephron number. The model predicted that pre-formed biomarkers would respond quickest to injury with a brief period of elevation, which would be easily missed in clinical scenarios. Induced biomarker time-courses would be influenced by biomarker-specific physiology and the balance between insult severity (which increased single nephron excretion), the number of remaining nephrons (reduced total excretion), and the extent of glomerular filtration rate reduction (increased concentration). Filtered biomarkers have the longest time-course because plasma levels increased following glomerular filtration rate decrease. Peak concentration and profile depended on the extent of damage to the reabsorption mechanism and recovery rate. Rapid recovery may be detected through a rapid reduction in urinary concentration. For all biomarkers, impaired hyperfiltration substantially increased concentration, especially with chronic kidney disease. For clinical validation of these model-derived predictions the clinical biomarker of choice will depend on timing in relation to renal insult and interpretation will require the pre-insult nephron number (renal mass) and detection of hyperfiltration.  相似文献   

16.
17.
Singh SR  Liu W  Hou SX 《Cell Stem Cell》2007,1(2):191-203
All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable and no stem cells have been identified. We have identified multipotent stem cells in the region of lower tubules and ureters of the Malpighian tubules. Using lineage tracing and molecular marker labeling, we demonstrated that several differentiated cells in the Malpighian tubules arise from the stem cells and an autocrine JAK-STAT signaling regulates the stem cells' self-renewal. Identifying adult kidney stem cells in Drosophila may provide important clues for understanding mammalian kidney repair and regeneration during injury.  相似文献   

18.
19.
The primary excretory organ in vertebrates is the kidney, which is responsible for blood filtration, solute homeostasis and pH balance. These functions are carried out by specialized epithelial cells organized into tubules called nephrons. Each of these cell types arise during embryonic development from a mesenchymal stem cell pool through a process of mesenchymal-to-epithelial transition (MET) that requires sequential action of specific Wnt signals. Induction by Wnt9b directs cells to exit the stem cell niche and express Wnt4, which is both necessary and sufficient for the formation of epithelia. Without either factor, MET fails, nephrons do not form and newborn mice die owing to kidney failure. Ectopic Notch activation in stem cells induces mass differentiation and exhaustion of the stem cell pool. To investigate whether this reflected an interaction between Notch and Wnt, we employed a novel gene manipulation strategy in cultured embryonic kidneys. We show that Notch activation is capable of inducing MET in the absence of both Wnt4 and Wnt9b. Following MET, the presence of Notch directs cells primarily to the proximal tubule fate. Only nephron stem cells have the ability to undergo MET in response to Wnt or Notch, as activation in the closely related stromal mesenchyme has no inductive effect. These data demonstrate that stem cells for renal epithelia are uniquely poised to undergo MET, and that Notch activation can replace key inductive Wnt signals in this process. After MET, Notch provides an instructive signal directing cells towards the proximal tubule lineage at the expense of other renal epithelial fates.  相似文献   

20.
Nephron number in the mammalian kidney is known to vary dramatically, with postnatal renal function directly influenced by nephron complement. What determines final nephron number is poorly understood but nephron formation in the mouse kidney ceases within the first few days after birth, presumably due to the loss of all remaining nephron progenitors via epithelial differentiation. What initiates this event is not known. Indeed, whether nephron formation occurs in the same way at this time as during embryonic development has also not been examined. In this study, we investigate the key cellular compartments involved in nephron formation; the ureteric tip, cap mesenchyme and early nephrons; from postnatal day (P) 0 to 6 in the mouse. High resolution analyses of gene and protein expression indicate that loss of nephron progenitors precedes loss of ureteric tip identity, but show spatial shifts in the expression of cap mesenchyme genes during this time. In addition, cap mesenchymal volume and rate of proliferation decline prior to birth. Section-based 3D modeling and Optical Projection Tomography revealed a burst of ectopic nephron induction, with the formation of multiple (up to 5) nephrons per ureteric tip evident from P2. While the distal–proximal patterning of these nephrons occurred normally, their spatial relationship with the ureteric compartment was altered. We propose that this phase of nephron formation represents an acceleration of differentiation within the cap mesenchyme due to a displacement of signals within the nephrogenic niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号