首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.  相似文献   

2.
The evolving realization that stress proteins, which have for many years been considered to be exclusively intracellular molecules under normal conditions, can be released from viable cells via a number of potential routes/pathways has prompted interest into their extracellular biology and intercellular signaling properties. That the stress proteins Hsp60, Hsp70 and gp96 can elicit both pro- and anti-inflammatory effects suggests that these molecules play a key role in the maintenance of immunological homeostasis, and a better understanding of the immunobiology of extracellular stress proteins might reveal new and more effective approaches for controlling and managing infectious disease, inflammatory disease and cancer. A number of cell surface receptors for stress proteins have been identified, and the intracellular consequences of these cell surface receptor-ligand interactions have been characterized. To date, studies into the intercellular signaling properties of stress proteins and their interactions with antigen presenting cells have focused on specific receptor-mediated uptake, and have not considered the fact that such cells can also take up proteins via non-specific endocytosis/pinocytosis. Herein we present a methodological approach for assessing receptor-mediated and non-receptor-mediated uptake of gp96 by rat bone marrow-derived dendritic cells.  相似文献   

3.
Heat shock proteins (hsp(s)) have been postulated to interact with APCs through specific receptors, although the receptors are yet to be identified. Specificity, saturation, and competition are the three defining attributes of a receptor-ligand interaction. We demonstrate here that the interaction of the heat shock proteins gp96 and hsp90 with CD11b+ cells is specific and saturable and that gp96 can compete with itself in gp96-macrophage interaction. Interestingly, the phylogenetically related hsp90 also competes quite effectively with gp96 for binding to macrophages, whereas the unrelated hsp70 does so relatively poorly, although it binds CD11b+ cells just as effectively. These data provide evidence that the heat shock proteins interact with APCs with specificity and for the existence of at least two distinct receptors, one for gp96 and hsp90 and the other for hsp70.  相似文献   

4.
gp96 (GRP94) elicits antigen-presenting cell (APC) activation and can direct peptides into the cross- presentation pathways of APC. These responses arise through interactions of gp96 with Toll-like (APC activation) and endocytic (cross-presentation) receptors of APC. Previously, CD91, the alpha2-macroglobulin receptor, was identified as the heat shock/chaperone protein receptor of APC. Recent data indicates, however, that inhibition of CD91 ligand binding does not alter gp96 recognition and uptake. Furthermore, CD91 expression is not itself sufficient for gp96 binding and internalization. We now report that scavenger receptor class-A (SR-A), a prominent scavenger receptor of macrophages and dendritic cells, serves a primary role in gp96 and calreticulin recognition and internalization. gp96 internalization and peptide re-presentation are inhibited by the SR-A inhibitory ligand fucoidin, although fucoidin was without effect on alpha2-macroglobulin binding or uptake. Ectopic expression of SR-A in HEK 293 cells yielded gp96 recognition and uptake activity. In addition, macrophages derived from SR-A-/- mice were substantially impaired in gp96 binding and uptake. These data identify new roles for SR-A in the regulation of cellular responses to heat shock proteins.  相似文献   

5.
Heat shock proteins like gp96 (grp94) are able to induce specific cytotoxic T-cell (CTL) responses against cells from which they originate and are currently studied in clinical trials for use in immunotherapy of tumors. We have recently demonstrated that gp96 binds to at least one yet unidentified receptor restricted to antigen-presenting cells (APCs) like dendritic cells (DCs) but not to T cells. Moreover we have shown, that for CTL activation by gp96-chaperoned peptides receptor-mediated uptake of gp96 by APCs is required. Lately, we have discovered a second function of gp96 when interacting with professional APCs. Gp96 is able to mediate maturation of DCs as determined by upregulation of MHC class II, CD86 and CD83 molecules, secretion of pro-inflammatory cytokines IL-12 and TNF-alpha and enhanced T-cell simulatory capacity. Furthermore, the gp96 receptor(s) are down-regulated on mature DCs, suggesting that the gp96 receptor(s) behave similar to other endocytic receptors like CD36, mannose receptor etc. Our findings now provide additional evidence for the remarkable immunogenicity of gp96: first, the existence of specific gp96 receptors on APCs and second, the capacity to activate dendritic cells which is strictly required to enable these highly sophisticated APCs to prime CTL responses.  相似文献   

6.
Heat shock proteins (HSPs), which are important for a number of different intracellular functions, are occasionally found on the surface of cells. The function of heat shock protein on the cell surface is not understood, although it has been shown to be greater in some tumor cells and some virally infected cells. Surface expression of both glycoprotein 96 (gp96) and Hsp70 occurs on tumor cells, and this expression correlates with natural killer cell killing of the cells. We examined the surface expression of gp96 and Hsp70 on human breast cell lines MCF7, MCF10A, AU565, and HS578, and in primary human mammary epithelial cells by immunofluorescence microscopy and flow cytometry. The nonmalignant cell lines HS578, MCF10A, and HMEC showed no surface expression of gp96, whereas malignant cell lines MCF7 and AU565 were positive for gp96 surface expression. All of the breast cell lines examined showed Hsp70 surface expression. These results also confirm previous studies, demonstrating that Hsp70 is on the plasma membrane of tumor cell lines. Given the involvement of heat shock proteins, gp96 and Hsp70, in innate and adaptive immunity, these observations may be important in the immune response to tumor cells.  相似文献   

7.
Glucose-regulated protein 94 (GRP94/gp96), the endoplasmic reticulum heat shock protein 90 paralog, elicits both innate and adaptive immune responses. Regarding the former, GRP94/gp96 stimulates APC cytokine expression and dendritic cell maturation. The adaptive component of GRP94/gp96 function reflects a proposed peptide-binding activity and, consequently, a role for native GRP94/gp96-peptide complexes in cross-presentation. It is by this mechanism that tumor-derived GRP94/gp96 is thought to suppress tumor growth and metastasis. Recent data have demonstrated that GRP94/gp96-elicited innate immune responses can be sufficient to suppress tumor growth and metastasis. However, the immunological processes activated in response to tumor Ag-negative sources of GRP94/gp96 are currently unknown. We have examined the in vivo immunological response to nontumor sources of GRP94/gp96 and report that administration of syngeneic GRP94/gp96- or GRP94/gp96-N-terminal domain-secreting KBALB fibroblasts to BALB/c mice stimulates CD11b(+) and CD11c(+) APC function and promotes bystander activation of CD4(+) T cell Th1 cytokine production. Only modest activation of CD8(+) T cell or NK cell cytolytic function was observed. The GRP94/gp96-dependent induction of CD4(+) T cell cytokine production was markedly inhibited by carrageenan, indicating an essential role for APC in this response. These results identify the bystander activation of CD4(+) T lymphocytes as a previously unappreciated immunological consequence of GRP94/gp96 administration and demonstrate that GRP94/gp96-elicited alterations in the in vivo cytokine environment influence the development of CD4(+) T cell effector functions, independently of its proposed function as a peptide chaperone.  相似文献   

8.
F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.  相似文献   

9.
Nucleic acid-sensing Toll-like receptors (TLRs) initiate innate immune responses to foreign RNA and DNA, yet can detect and respond to host DNA. To avoid autoimmune pathologies, nucleic acid sensing TLRs are tightly regulated. TLR9 primarily resides in the endoplasmic reticulum, traffics to endosomes, is proteolytically processed and responds to DNA. The heat shock protein gp96 is one of several accessory proteins that regulate intracellular trafficking of TLR9. In the absence of gp96, TLR9 fails to exit the endoplasmic reticulum, and therefore gp96-deficient macrophages fail to respond to CpG DNA. However, absence of gp96 precludes studies on potential chaperoning functions of gp96 for TLR9. Here we demonstrate that pharmacologic interference with gp96 function inhibits TLR9 signaling. TLR9 remains associated with gp96 during intracellular trafficking, and gp96-specific inhibitors increase TLR9 sensitivity to proteolytic degradation. We propose that gp96 is critical for both TLR9 egress from the ER, and for protein conformational stability in the endosomal compartment. These studies highlight the importance of examining gp96-specific inhibitors for modulating TLR9 activation, and the treatment autoimmune diseases.  相似文献   

10.
Although the ability of gp96 to activate APCs and generate CD8 CTLs against peptides they chaperone through interaction with the endocytic receptors CD91 is supported by solid evidence, its biological relevance in immune surveillance is debated. We have used an evolutionary approach to determine whether gp96 interacts with receptors expressed on APCs and promotes MHC class I cross-presentation of minor histocompatibility Ags (H-Ags) to CTLs in the frog Xenopus. We show that in Xenopus gp96 binds the CD91 homolog at the surface of peritoneal leukocytes, and that this binding is inhibited by molar excess of unlabeled gp96 or the CD91 ligand alpha2-macroglobulin, by anti-CD91 Ab and by the specific CD91 antagonist receptor-associated protein. Surface binding followed by internalization of gp96 was confirmed by fluorescent microscopy. Furthermore, adoptive transfer of peritoneal leukocytes pulsed with as little as 800 ng of gp96 chaperoning minor H-Ags, but not minor H-Ag-free gp96, induces potent CD8 T cell infiltration and Ag-specific accelerated rejection of minor H-locus disparate skin grafts. Inhibition of gp96-CD91 interaction by pretreatment with anti-CD91 Ab and receptor-associated protein impairs both CD8 T cell infiltration and acute skin graft rejection. These data provide evidence of the conserved ability of gp96 to facilitate cross-presentation of chaperoned Ags by interacting with CD91. The persistence of this biological process for >350 million years that separate mammals and amphibians from a common ancestor strongly supports the proposition that gp96 and CD91 are critically involved in immune surveillance.  相似文献   

11.
Heat-shock proteins (HSPs) act like "chaperones", making sure that the cell's proteins are in the right shape and in the right place at the right time. Heat-shock protein glycoprotein 96 (gp96) is a member of the HSP90 protein family, which chaperones a number of molecules in protein folding and transportation. Heat-shock protein gp96 serves as a natural adjuvant for chaperoning antigenic peptides into the immune surveillance pathways. Currently, heat-shock protein gp96 was only isolated from murine and human tissues and cell lines. An animal cell suspension culture process for the production of heat-shock protein gp96 by MethA tumor cell was developed for the first time in spinner flasks. Effects of culture medium and condition were studied to enhance the MethA tumor cell density and the production and productivity of heat-shock protein gp96. Initial glucose concentration had a significant effect on the heat-shock protein gp96 accumulation, and an initial glucose level of 7.0 g/L was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Cultures at an initial glutamine concentration of 3 and 6 mM were nutritionally limited by glutamine. At an initial glutamine concentration of 6 mM, the maximal viable cell density of 19.90 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 4.95 mg/L was obtained. The initial concentration of RPMI 1640 and serum greatly affected the MethA tumor cell culture process. Specifically cultures with lower initial concentration of RPMI 1640 resulted in lower viable cell density and lower heat-shock protein gp96 production. At an initial serum concentration of 8%, the maximal viable cell density of 19.18 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 5.67 mg/L was obtained. The spin rate significantly affected the cell culture process in spinner flasks, and a spin rate of 150 rpm was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Not only the cell density but also the production and productivity of heat-shock protein gp96 attained in this work are the highest reported in the culture of MethA tumor cell. This work offers an effective approach for producing heat-shock protein glycoprotein 96 from the cell culture process. The fundamental information obtained in this study may be useful for the efficient production of heat-shock protein by animal cell suspension culture on a large scale.  相似文献   

12.
Dendritic cells (DCs) are one of the most potent antigen-presenting cells (APCs) capable of activating immune responses. Different forms of tumor antigens have been used to load DCs to initiate tumor-specific immune responses. Heat shock proteins (HSPs) are considered natural adjuvants which have the ability to chaperone peptides associated with them presented efficiently by interaction with professional APCs through specific receptors. In the present study, we used HSP, gp96-peptide complexes, derived from human hepatocellular carcinoma (HCC) cells as antigens for pulsing DCs. We found that gp96-peptide complexes derived from HCC cells induced the maturation of DCs by enhancing expression of human leukocyte antigen class II, CD80, CD86, CD40, and CD83. The matured DCs stimulated a high level of autologous T cell proliferation and induced HCC specific cytotoxic T lymphocytes, which specifically killed HCC cells by a major histocompatability complex (MHC) class I restricted mechanism. These findings demonstrate that DCs pulsed with gp96-peptide complexes derived from HCC cells are effective in activating specific T cell responses against HCC cells.  相似文献   

13.
The structural basis for molecular chaperones to discern misfolded proteins has long been an enigma. As the endoplasmic reticulum paralogue of the cytosolic HSP90, gp96 (GRP94, HSP90b1) is an essential molecular chaperone for Toll-like receptors (TLRs) and integrins. However, little is known about its client-binding domain (CBD). Herein, we provide genetic and biochemical evidence to definitively demonstrate that a C-terminal loop structure, formed by residues 652-678, is the critical region of CBD for both TLRs and integrins. Deletion of this region affects neither the intrinsic ATPase activity nor the overall conformation of gp96. However, without it, the chaperoning function of gp96 collapses. We also find a critical Met pair (Met(658)-Met(662)) for the folding of integrins but not TLRs. Moreover, we find that the TLR binding to gp96 is also dependent on the C-terminal dimerization domain but not the N-terminal ATP-binding pocket of gp96. Our study has unveiled surprisingly the exquisite specificity of gp96 in substrate binding and suggests a manipulation of its CBD as an alternative strategy for targeted therapy of a variety of diseases.  相似文献   

14.
Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and β2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.  相似文献   

15.
We have previously described a number of NK cell dysfunctions in HIV-viremic individuals. In the present study, we performed DNA microarray analysis followed by phenotypic and functional characterization in an effort to investigate which HIV envelope glycoproteins (gp120) affect the physiologic functions of NK cells. Upon treatment of NK cells with HIV gp120, DNA microarray analyses indicated up-regulation of several categories of genes that are associated with apoptosis, suppression of both cellular proliferation and survival, as well as down-regulation of genes that play a vital role in cell proliferation, innate immune defense mechanism, and cell survival. Both subtypes of gp120 suppressed NK cell cytotoxicity, proliferation, and the ability to secrete IFN-gamma. NK cells exposed to X4-subtype HIV gp120 showed a significant decrease in the levels of CC chemokines, while exposure to R5-subtype HIV gp120 had minimal effect. Extended exposure to HIV gp120 resulted in apoptosis of NK cells, further validating the microarray data. Our data demonstrate that exposure of NK cells to HIV envelope proteins results in profound cellular abnormalities at the level of gene expression as well as generic cell functions. These findings are likely to be a consequence of a direct HIV gp120-mediated effect on NK cells. Identification of specific surface receptors on NK cells that interact with HIV envelope proteins might explain how HIV is capable of circumventing innate immune defense mechanisms and establishing infection in susceptible individuals.  相似文献   

16.
The ability of mature T lymphocytes to develop effector capacity after encounter with cognate Ag is generally dependent upon inflammatory signals associated with infection that induce dendritic cell activation/maturation. These inflammatory signals can derive directly from pathogens or can be expressed by host cells in response to infection. Heat shock proteins (HSPs) are a class of host-derived inflammatory mediators that perform the dual function of both chaperoning MHC class I-restricted epitopes into the cross-presentation pathway of DCs and inducing the activation/maturation of these DCs to allow priming of cognate CD8(+) T cell effector responses. Although the ability of HSPs to elicit effector CD8 cell responses has been well established, their potential to prime CD4 cell effector responses has been relatively unexplored. In the current study we compared the ability of the endoplasmic reticulum-resident HSP gp96 to prime CD4 vs CD8 cells using TCR transgenic adoptive transfer systems and soluble gp96-peptide complexes. As expected, gp96 facilitated the cross-presentation of a class I-restricted peptide and priming of effector function in cognate CD8 cells. Interestingly, gp96 also facilitated the in vivo presentation of a class II-restricted peptide; however, the resulting CD4 cell response did not involve the development of effector function. Taken together, these data suggest that gp96 is an inflammatory mediator that selectively primes CD8 cell effector function.  相似文献   

17.
The key stage of the infection of the Escherichia coli cell with bacteriophage T4, the binding to the surface of the host cell, is determined by the specificity of the long tail fiber proteins of the phage, in particular, gp37. The assembly and oligomerization of this protein under natural conditions requires the participation of at least two additional protein factors, gp57A and gp38, which strongly hinders the production of the recombinant form of gp37. To overcome this problem, a modern protein engineering strategy was used, which involves the construction of a chimeric protein containing a carrier protein that drives the correct folding of the target protein. For this purpose, the trimeric β-helical domain of another protein of phage T4, gp5, was used. It was shown that this domain, represented as a rigid trimeric polypeptide prism, has properties favorable for use as a protein carrier. A fragment of protein gp37 containing five pentapeptide repeats, Gly-X-His-X-His, which determine the binding to the receptors on the bacterial cell surface, was fused in a continuous reading frame to the C-terminus of the domain of gp5. The resulting chimeric protein forms a trimer that has the native conformation of gp37 and exhibits biological activity.  相似文献   

18.
In mammals, the heat shock protein gp96 complexed to antigenic peptides elicits T cell adaptive immunity. By itself, however, gp96 can evoke responses that are characteristic of innate immunity. Interestingly, this protein, which resides in the endoplasmic reticulum, is expressed on the surface of certain mouse tumor cells. Given that heat shock proteins are highly conserved, we investigated whether the cell surface expression of gp96 is also evolutionarily conserved. Our data reveal that gp96, most likely containing the endoplasmic reticulum retention motif (KDEL), is expressed on the surface of three different Xenopus lymphoid tumor cell lines, each derived from a different spontaneously arising thymic tumor. Levels of expression differ among the tumor lines tested, with more immunogenic tumors expressing greater amounts of surface gp96. Moreover, a high level of gp96 surface expression is detectable on a subset of Xenopus normal nontransformed splenic lymphocytes (mainly surface IgM+ B cells) but not on other normal cells, including macrophages and nucleated erythrocytes. Surface expression of a gp96 protein homologue occurs also on some, but not all, T and B cell clones derived from peripheral blood cells of the channel catfish, as well as on lymphocyte-like cells, but not on erythrocytes from the hagfish, a primitive agnathan vertebrate lacking markers of an adaptive immune system. gp96 is actively directed to and retained on the plasma membrane of Xenopus lymphocytes and tumor cells and hagfish lymphocyte-like cells by a process that requires vesicular transport. This selective surface expression of gp96 on some immune cells from different vertebrate classes is consistent with an ancestral immunological role of gp96 as danger-signaling molecule.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号