首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of the characteristic structural patterns responsible for protein thermostability is theoretically important and practically useful but largely remains an open problem. These patterns may be revealed through comparative study on thermophilic and mesophilic proteins that have distinct thermostability. In this study, we constructed several distance-dependant potentials from thermophilic and mesophilic proteins. These potentials were then used to evaluate the structural difference between thermophilic and mesophilic proteins. We found that using the subtraction or division of the potentials derived from thermophilic and mesophilic proteins can dramatically increase the discriminatory ability. This approach revealed that the ability to distinct the subtle structural features responsible for protein thermostability may be effectively enhanced through rationally designed comparative study.  相似文献   

2.
G protein-coupled receptors are dynamically regulated. Such regulation is frequently associated with covalent posttranslational modifications, such as phosphorylation, and with regulatory elements. G protein-coupled receptor kinases and casein kinase 1alpha play key roles in agonist-dependent receptor phosphorylations. Cross-talk between different receptors frequently involves second messenger-activated proteins, such as protein kinase C and protein kinase A. There is some evidence indicating that such kinases may not only turn off receptors but also switch their coupling to different G proteins. Receptor tyrosine kinases may phosphorylate and regulate G protein-coupled receptors and recent evidence indicates that other kinases, such as Akt/protein kinase B and phosphoinositide 3-kinase, may participate in such regulations as integrators of signalling.Recent approaches have shed new light on G protein-coupled receptor interactions that provide novel mechanisms of action and regulation. G protein-coupled receptor activities go beyond G proteins and receptors can be partners of exquisitely assembled signalling complexes through molecular bridges composed of multidomain proteins. The possibilities of interaction increase enormously through the diversity of structural and functional domains present in complex proteins, many of them just known as predicted sequences.  相似文献   

3.
Doxorubicin is commonly considered to exert its anti-tumor activity by triggering apoptosis of cancer cells through DNA damage. Recent reports have shown that Doxorubicin elicits a marked heat shock response, and that either inhibition or silencing of heat shock proteins enhance the Doxorubicin apoptotic effect in neuroblastoma cells. In order to investigate whether Doxorubicin may also act through protein modification, we performed a proteomic analysis of ubiquitinated proteins. Here we show that nanomolar Doxorubicin treatment of neuroblastoma cells caused: (a) dose-dependent over-ubiquitination of a specific set of proteins in the absence of measurable inhibition of proteasome, (b) protein ubiquination patterns similar to those with Bortezomib, a proteasome inhibitor, (c) depletion and loss of activity of ubiquitinated enzymes such as lactate dehydrogenase and α-enolase, and (d) a decrease in HSP27 solubility, probably a consequence of its binding to denatured proteins. These data strongly reinforce the hypothesis that Doxorubicin may also exert its effect by damaging proteins.  相似文献   

4.
5.
Lyssand JS  Bajjalieh SM 《FEBS letters》2007,581(30):5765-5768
Receptors that signal through heterotrimeric [corrected] GTP binding (G) proteins mediate the majority of intercellular communication. Recent evidence suggests that receptors acting through G proteins also transfer signals across the nuclear membrane. Here we present cell fractionation and immunolabeling data showing that the heterotrimeric [corrected] G protein subunit Galphai is associated with mitochondria. This finding suggests that G protein receptor signaling may be a feature common to all membranes.  相似文献   

6.
T U Mayer  T Braun    S Jentsch 《The EMBO journal》1998,17(12):3251-3257
Selective degradation of proteins at the endoplasmic reticulum (ER-associated degradation) is thought to proceed largely via the cytosolic ubiquitin-proteasome pathway. Recent data have indicated that the dislocation of short-lived integral-membrane proteins to the cytosolic proteolytic system may require components of the Sec61 translocon. Here we show that the proteasome itself can participate in the extraction of an ER-membrane protein from the lipid bilayer. In yeast mutants expressing functionally attenuated proteasomes, degradation of a short-lived doubly membrane-spanning protein proceeds rapidly through the N-terminal cytosolic domain of the substrate, but slows down considerably when continued degradation of the molecule requires membrane extraction. Thus, proteasomes engaged in ER degradation can directly process transmembrane proteins through a mechanism in which the dislocation of the substrate and its proteolysis are coupled. We therefore propose that the retrograde transport of short-lived substrates may be driven through the activity of the proteasome.  相似文献   

7.
The matrix (M) protein of rhabdoviruses has been shown to play a key role in virus assembly and budding; however, the precise mechanism by which M mediates these processes remains unclear. We have associated a highly conserved, proline-rich motif (PPxY or PY motif, where P denotes proline, Y represents tyrosine, and x denotes any amino acid) of rhabdoviral M proteins with a possible role in budding mediated by the M protein. Point mutations that disrupt the PY motif of the M protein of vesicular stomatitis virus (VSV) have no obvious effect on membrane localization of M but instead lead to a decrease in the amount of M protein released from cells in a functional budding assay. Interestingly, the PPxY sequence within rhabdoviral M proteins is identical to that of the ligand which interacts with WW domains of cellular proteins. Indeed, results from two in vitro binding assays demonstrate that amino acids 17 through 33 and 29 through 44, which contain the PY motifs of VSV and rabies virus M proteins, respectively, mediate interactions with WW domains of specific cellular proteins. Point mutations that disrupt the consensus PY motif of VSV or rabies virus M protein result in a significant decrease in their ability to interact with the WW domains. These properties of the PY motif of rhabdovirus M proteins are strikingly analogous to those of the late (L) budding domain identified in the gag-specific protein p2b of Rous sarcoma virus. Thus, it is possible that rhabdoviruses may usurp host proteins to facilitate the budding process and that late stages in the budding process of rhabdoviruses and retroviruses may have features in common.  相似文献   

8.
Recent studies have shown that GTP-binding proteins can modulate mitochondrial membrane fusion and fission. Furthermore, GTP-binding proteins can regulate the binding of ribosomes to the mitochondrial membrane and may facilitate the import of proteins through contact points between inner and outer mitochondrial membranes. Mitochondrial GTP-binding proteins therefore appear to have the potential to modulate physiological function of the organelle and may also be involved in cellular processes such as cellular transformation. A beginning has been made on the characterization of mitochondrial GTP-binding proteins and the DNA sequence of one protein has become newly available. Future studies are needed to determine whether GTP-binding proteins are interacting with cell signalling molecules such as protein kinases in the mitochondria.  相似文献   

9.
Proteins on the move: insights gained from fluorescent protein technologies   总被引:1,自引:0,他引:1  
Proteins are always on the move, and this may occur through diffusion or active transport. The realization that the regulation of signal transduction is highly dynamic in space and time has stimulated intense interest in the movement of proteins. Over the past decade, numerous new technologies using fluorescent proteins have been developed, allowing us to observe the spatiotemporal dynamics of proteins in living cells. These technologies have greatly advanced our understanding of protein dynamics, including protein movement and protein interactions.  相似文献   

10.
Many enzymes show a pattern of increase in activity through the cell cycle which is different from the continuous exponential pattern of total protein synthesis. A group of proteins at an intermediate level between single enzymes and total protein, the soluble proteins, was examined to resolve this anomaly. The synthesis of the pH 8.1 soluble proteins of Schizosaccharomyces pombe through the cell cycle was followed by pulse labelling with 3H-leucine in synchronous cultures. The soluble proteins were analysed by electrophoresis on acrylamide gels. Soluble proteins represent 30% of the total proteins of S. pombe and the rates of synthesis showed a continuous increase through the cell cycle. Individual groups of proteins, represented by a single band after electrophoresis, showed a similar continuous increase in synthesis through the cell cycle. Any proteins which may be synthesised discontinuously, such as some enzymes, represent such a small proportion of any one protein group in the electrophoretic separation that their effect was not detectable. These results are different from those described for mammalian cells.  相似文献   

11.
《Gene》1997,192(1):23-32
Biogenesis of both filamentous phage and type-IV pili involves the assembly of many copies of a small, integral inner membrane protein (the phage major coat protein or pilin) into a helical, tubular array that passes through the outer membrane. The occurrence of related proteins required for assembly and export in both systems suggests that there may be similarities at the mechanistic level as well. This report summarizes the properties of filamentous phage and the proteins required for their assembly, with particular emphasis on features they may share with bacterial protein export and pilus biogenesis systems, and it presents evidence that supports the hypothesis that one of the phage proteins functions as an outer membrane export channel.  相似文献   

12.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.  相似文献   

13.
Selective oxidation of methionine residues in prion proteins.   总被引:5,自引:0,他引:5  
Prion proteins are central to the pathogenesis of several neurodegenerative diseases through the postulated conversion of the endogenous cellular isoform (PrPc) into a pathogenic isoform (PrPSc). Although the cellular function of normal prion protein remains unresolved a number of studies have shown that prion proteins may be involved in the cellular response to oxidative stress. Here, using purified recombinant sources of mouse and chicken PrP refolded in the presence of copper (II) we show that the methionine residues of the protein are uniquely susceptible to oxidation. We suggest that Met residues may form an essential part of the mechanism of the antioxidant activity exhibited by normal prion protein.  相似文献   

14.
Experiments on animals showed that native proteins may diffuse into the blood flow after oral administration of diluted protein solutions. An in vitro study led us to hypothesize that treatment with diluted solutions is accompanied by a decrease in the rate of protein proteolysis and accelerated protein diffusion through the intestinal mucosa.  相似文献   

15.
The translocation liposarcoma (TLS) gene is fused to the ETS-related gene (ERG) in human myeloid leukemia, resulting in the generation of a TLS-ERG protein. We demonstrate that both TLS and the TLS-ERG leukemia fusion protein bind to RNA polymerase II through the TLS N-terminal domain, which is retained in the fusion protein; however, TLS recruits members of the serine-arginine (SR) family of splicing factors through its C-terminal domain, whereas the TLS-ERG fusion protein lacks the ability to recruit SR proteins due to replacement of the C-terminal domain by the fusion partner ERG. In transient-transfection assays, the TLS-ERG fusion protein inhibits E1A pre-mRNA splicing mediated by these TLS-associated SR proteins (TASR), and stable expression of the TLS-ERG fusion protein in K562 cells alters the splicing profile of CD44 mRNA. These results suggest that TLS fusion proteins may lead to cellular abnormalities by interfering with the splicing of important cellular regulators.  相似文献   

16.
Timely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients. A subsequent ubiquitination targeting DSS1-protein adducts has been observed, suggesting the client proteins are degraded through the ubiquitin-proteasome pathway. The DSS1 attachment to its clients is evidenced to be an enzymatic process modulated by an unidentified ATPase. We name this novel protein modification as DSSylation, in which DSS1 plays as a modifier, whose attachment may render target proteins a signature leading to their subsequent ubiquitination, thereby recruits proteasome to degrade them.  相似文献   

17.
根据蛋白质的氨基酸组成实现其快速鉴定   总被引:1,自引:0,他引:1  
常规进行蛋白质鉴定的方法是测定其氨基酸顺序,它需要蛋白质顺序分析仪,对蛋白质的纯度要求高,费时和花费大,与之相比,蛋白质的氨基酸组成和分子量是容易实验测定的。本文描述了一个基于蛋白质的组成和分子量进行其快速鉴定的方法。其基本出发点是,通过统计蛋白质序列数据库中每个序列的氨基酸组成和分子量,得到一个含蛋白质长度、组成和分子量的数据库,将靶蛋白质的组成等数据与该数据库进行对比,可以检出组成和分子量与之接近的蛋白质。从而对该蛋白质进行初步鉴定。在有些情况下,甚至能相当准确地确定靶蛋白质与数据库中的某个(些)蛋白质相关。根据这一原理本文设计了根据氨基酸组成检索蛋白质组成数据库的程序,通过对胰岛素原、细胞肿瘤抗原P53和泛肽等多种蛋白质的组成分析,证实根据氨基酸组成能较好地进行蛋白质鉴定。  相似文献   

18.
Experiments on animals showed that native proteins may diffuse into the blood flow after oral administration of diluted protein solutions. An in vitro study led us to hypothesize that treatment with diluted solutions is accompanied by a decrease in the rate of protein proteolysis and accelerated protein diffusion through the intestinal mucosa.  相似文献   

19.
Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.  相似文献   

20.
Tyther R  Ahmeda A  Johns E  Sheehan D 《Proteomics》2007,7(24):4555-4564
Nitrosative and oxidative stress are implicated in the development of hypertension. Events in the renal medulla may play a key role in the development and progression of hypertension. This may arise through disruption of nitric oxide signalling in the medulla and be accompanied by enhanced nitrosative and oxidative stress as indicated by the presence of proteins containing 3-nitrotyrosine. Here we demonstrate enhanced protein nitration in the medulla of spontaneously hypertensive rats. We have identified several nitrated proteins with both varied subcellular location and functional roles. These proteins are involved in nitric oxide signalling, antioxidant defense and energy metabolism. Moreover, increased nitration was observed in conjunction with enhanced oxidative damage as evidenced by the presence of protein carbonyl oxidative stress biomarkers. Our results suggest that kidney medulla is subject to enhanced nitrosative and oxidative stress, and that resulting protein modifications may contribute to the progression of hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号