首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondrial permeability transition in acute neurodegeneration   总被引:12,自引:0,他引:12  
Friberg H  Wieloch T 《Biochimie》2002,84(2-3):241-250
Acute neurodegeneration in man is encountered during and following stroke, transient cardiac arrest, brain trauma, insulin-induced hypoglycemia and status epilepticus. All these severe clinical conditions are characterized by neuronal calcium overload, aberrant cell signaling, generation of free radicals and elevation of cellular free fatty acids, conditions that favor activation of the mitochondrial permeability transition pore (mtPTP). Cyclosporin A (CsA) and its analog N-methyl-valine-4-cyclosporin A (MeValCsA) are potent blockers of the mtPTP and protect against neuronal death following excitotoxicity and oxygen glucose deprivation. Also, CsA and MeValCsA diminish cell death following cerebral ischemia, trauma, and hypoglycemia. Here we present data that strongly imply the mtPT in acute neurodegeneration in vivo. Compounds that readily pass the blood-brain-barrier (BBB) and block the mtPT may be neuroprotective in stroke.  相似文献   

3.
A Koj 《Blut》1985,51(4):267-274
The acute phase response to injury includes metabolic alterations, such as fever, leucocytosis, enhanced uptake of some metals and amino acids by liver, and changes in the synthesis of certain plasma proteins. Many of these effects can be elicited either in vivo or in tissue culture by monocyte- and keratinocyte-derived cytokine interleukin 1 (IL-1), which had earlier been variably termed leucocytic endogenous mediator, lymphocyte activating factor, or endogenous pyrogen. Although recombinant murine IL-1 was shown to induce hepatic synthesis of acute phase proteins other authors demonstrated that hepatocyte stimulating factor (HSF) is distinct from IL-1. Possible relationships between HSF und IL-1 and the molecular mechanisms of action of these cytokines on the synthesis of acute phase proteins are briefly discussed.  相似文献   

4.
Environmental stimuli during the perinatal period can result in persistent individual differences in neural viability and cognitive functions. Earlier studies have shown that brief daily maternal separation and/or handling of rat pups during the first weeks of life reduces stress reactivity during adulthood and attenuates neuronal loss and cognitive decline during aging. In the present study we examined whether neonatal handling also affects the sensitivity of the adult brain to an acute neurotoxic insult. Postnatally handled and nonhandled control rats were left undisturbed from weaning onwards until the age of 11 months. At this age, the animals were subjected to a neurotoxic challenge by unilateral infusion of 60 mM of the glutamate analogue N-methyl-D-aspartate (NMDA) into the nucleus basalis magnocellularis (NBM). The brains were collected to measure cholinergic cell and fiber loss. In the nonlesioned side of the brain, cholinergic cell number in the NBM and fiber density in the cortex were not different between postnatally handled and control rats. However, in the lesioned hemisphere handled animals exhibited a significantly higher loss of choline-acetyltransferase-immunoreactive and acetylcholinesterase-positive fibers in the somatosensory cortex. The present results provide evidence for an enhanced vulnerability of postnatally handled rats to acute neurodegeneration in contrast to the previously reported attenuation of spontaneous aging-related neurodegenerative processes.  相似文献   

5.
Nerve agents and some pesticides such as diisopropylfluorophosphate (DFP) cause neurotoxic manifestations that include seizures and status epilepticus (SE), which are potentially lethal and carry long-term neurological morbidity. Current antidotes for organophosphate (OP) intoxication include atropine, 2-PAM and diazepam (a benzodiazepine for treating seizures and SE). There is some evidence for partial or complete loss of diazepam anticonvulsant efficacy when given 30?min or later after exposure to an OP; this condition is known as refractory SE. Effective therapies for OP-induced SE are lacking and it is unclear why current therapies do not work. In this study, we investigated the time-dependent efficacy of diazepam in the nerve agent surrogate DFP model of OP intoxication on seizure suppression and neuroprotection in rats, following an early and late therapy. Diazepam (5?mg/kg, IM) controlled seizures when given 10?min after DFP exposure (“early”), but it was completely ineffective at 60 or 120?min (“late”) after DFP. DFP-induced neuronal injury, neuroinflammation, and neurodegeneration of principal cells and GABAergic interneurons were significantly reduced by early but not late therapy. These findings demonstrate that diazepam failed to control seizures, SE and neuronal injury when given 60?min or later after DFP exposure, confirming the benzodiazepine-refractory SE and brain damage after OP intoxication. In addition, this study indicates that degeneration of inhibitory interneurons and inflammatory glial activation are potential mechanisms underlying these morbid outcomes of OP intoxication. Therefore, novel anticonvulsant and neuroprotectant antidotes, superior to benzodiazepines, are desperately needed for controlling nerve agent-induced SE and brain injury.  相似文献   

6.
Komatsu M  Kominami E  Tanaka K 《Autophagy》2006,2(4):315-317
The proteasome and lysosome are sophisticated apparatuses capable of shredding unnecessary proteins in eukaryotic cells. The proteasome and its partner ubiquitin (which functions as a destination signal for proteolysis) play crucial roles in selective breakdown of not only short-lived regulatory proteins but also abnormal proteins that need to be rapidly eliminated from the cells. It is generally accepted that deficits of the proteasome-ubiquitin system are associated with various neurodegenerative diseases, since ubiquitin-positive inclusions frequently appear in neurons of patients and mice models of neurodegenerative diseases. However, investigators working in the field of neuronal diseases have focused their attention in recent years on autophagy (Greek for "the eating of oneself") following the recent discovery that ablation of autophagy leads to accumulation of ubiquitin-positive inclusions, which are the pathological hallmark of neurodegenerative diseases. Here we discuss the consequences of autophagy deficiency in neurons.  相似文献   

7.
Calcium and neurodegeneration   总被引:10,自引:0,他引:10  
Mattson MP 《Aging cell》2007,6(3):337-350
When properly controlled, Ca2+ fluxes across the plasma membrane and between intracellular compartments play critical roles in fundamental functions of neurons, including the regulation of neurite outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell survival. During aging, and particularly in neurodegenerative disorders, cellular Ca2+-regulating systems are compromised resulting in synaptic dysfunction, impaired plasticity and neuronal degeneration. Oxidative stress, perturbed energy metabolism and aggregation of disease-related proteins (amyloid beta-peptide, alpha-synuclein, huntingtin, etc.) adversely affect Ca2+ homeostasis by mechanisms that have been elucidated recently. Alterations of Ca2+-regulating proteins in the plasma membrane (ligand- and voltage-gated Ca2+ channels, ion-motive ATPases, and glucose and glutamate transporters), endoplasmic reticulum (presenilin-1, Herp, and ryanodine and inositol triphosphate receptors), and mitochondria (electron transport chain proteins, Bcl-2 family members, and uncoupling proteins) are implicated in age-related neuronal dysfunction and disease. The adverse effects of aging on neuronal Ca2+ regulation are subject to modification by genetic (mutations in presenilins, alpha-synuclein, huntingtin, or Cu/Zn-superoxide dismutase; apolipoprotein E isotype, etc.) and environmental (dietary energy intake, exercise, exposure to toxins, etc.) factors that may cause or affect the risk of neurodegenerative disease. A better understanding of the cellular and molecular mechanisms that promote or prevent disturbances in cellular Ca2+ homeostasis during aging may lead to novel approaches for therapeutic intervention in neurological disorders such as Alzheimer's and Parkinson's diseases and stroke.  相似文献   

8.
Transglutaminases (TGs) are Ca2+-dependent enzymes that catalyze a variety of modifications of glutaminyl (Q) residues. In the brain, these modifications include the covalent attachment of a number of amine-bearing compounds, including lysyl (K) residues and polyamines, which serve to either regulate enzyme activity or attach the TG substrates to biological matrices. Aberrant TG activity is thought to contribute to Alzheimer disease, Parkinson disease, Huntington disease, and supranuclear palsy. Strategies designed to interfere with TG activity have some benefit in animal models of Huntington and Parkinson diseases. The following review summarizes the involvement of TGs in neurodegenerative diseases and discusses the possible use of selective inhibitors as therapeutic agents in these diseases.  相似文献   

9.
10.
11.
Tau protein and neurodegeneration   总被引:4,自引:0,他引:4  
Tau protein is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick's disease (PiD), argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The identification of mutations in Tau as the cause of FTDP-17 established that dysfunction or misregulation of tau protein is sufficient to cause neurodegeneration and dementia. At an experimental level, the new understanding is leading to the development of good transgenic animal models of the tauopathies.  相似文献   

12.
13.
14.
Tau protein and neurodegeneration   总被引:3,自引:0,他引:3  
Many of the human neurodegenerative conditions involve a reorganization of the neuronal cytoskeleton. The way in which the cytoskeleton is reorganized may provide a clue to the nature of the insult causing the neurodegeneration. The most common of these conditions is Alzheimer's disease, in which microtubules are lost from neurites that fill up with filamentous structures. One component of the filamentous structures is the microtubule-associated protein (MAP), tau. The tau protein is the product of a single gene expressed predominantly in neurons. The tau gene undergoes complex alternative splicing that is regulated both by development, and by the particular neuronal cell population in which it is expressed. Tau protein can be further modified, following its translation by phosphorylation at several sites. Much of the recent interest in the transition of tau to an abnormal state within a tangle-bearing neuron has focused on phosphorylation. A group of proteins that migrate slightly more slowly than tau, designated PHF-tau, are found in regions of the Alzheimer brain rich in dystrophic neurites, are hyperphosphorylated, fail to bind to microtubules, have distinct solubility properties, and can be derived from fractions of paired helical filaments (PHF).  相似文献   

15.
《朊病毒》2013,7(4):195-201
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding the loss of neuronal cell bodies. In Alzheimer's, Huntington's, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.  相似文献   

16.
Metals ions and neurodegeneration   总被引:4,自引:0,他引:4  
Neurodegenerative disorders include a variety of pathological conditions, which share similar critical metabolic processes such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. In this review Alzheimer’s disease and Parkinson’s disease are mainly discussed, with the aim of identifying common trends underlying these neurological conditions. Chelation therapy could be a valuable therapeutic approach, since metals are considered to be a pharmacological target for the rationale design of new therapeutic agents directed towards the treatment of neurodegeneration.  相似文献   

17.
18.
Cytokines have crucial functions in the development, differentiation and regulation of immune cells. As a result, dysregulation of cytokine production or action is thought to have a central role in the development of autoimmunity and autoimmune disease. Some cytokines, such as interleukin-2, tumour-necrosis factor and interferons--ostensibly, the 'bad guys' in terms of disease pathogenesis--are well known for the promotion of immune and inflammatory responses. However, these cytokines also have crucial immunosuppressive functions and so, paradoxically, can also be 'good guys'. The balance between the pro-inflammatory and immunosuppressive functions of these well-known cytokines and the implications for the pathogenesis of autoimmune disease is the focus of this review.  相似文献   

19.
Thomas F. Byrd 《Biotherapy》1994,7(3-4):179-186
Recent studies have led to an enhanced understanding of the role of cell-mediated immunity and cytokines in Legionnaires' disease. In particular, the effect of interferon gamma on human mononuclear phagocyte iron metabolism and the role of iron availability inLegionella pneumophila intracellular multiplication in human monocytes has been elucidated. With this knowledge it is now possible to develop treatment strategies for Legionnaires' disease using interferon gamma and/or agents affecting human mononuclear phagocyte iron metabolism.Abbreviations M-CSF Macrophage colony stimulating factor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号