首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bean plantlets ( Phaseolus vulgaris L. cv. Topcrop) were stressed at the age of 16–18 days by gradual (2–8%) or abrupt addition of 6% (w/v) polyethylene glycol Mw 6000 (PEG 6000) to Hoagland solution. Leaf conductance, photosynthesis, internal CO2 partial pressure (Ci), relative water content (RWC), water content/dry weight (H2O/DW), apoplastic PEG concentrations and weight of leaves, stems and roots were determined. Leaf conductance, photosynthesis and Ci were determined on non-detached primary leaves, and leaf potentials (water, osmotic and turgor potentials) were investigated in freshly detached (non-rehydrated) primary leaves, both in treated and control plants; RWC and osmotic potential were also assessed at the null turgor point. Low PEG 6000 concentrations induced early and evident decrease in leaf conductance and photosynthesis, whereas Ci decreased only moderately and tended to recover during advanced stress. There were moderate though significant decreases in RWC and H2O/DW, no change or increases in water potential, no significant changes in osmotic potential and a moderate but significant increase in turgor potential. Even when referred to null turgor point, RWC significantly decreased and osmotic potential was unchanged. It was concluded that apoplastic PEG 6000 accumulation at evaporating sites would account for the early decrease in conductance which would also justify the unchanged or the prevalent increase in water potential and turgor potential. The subsequent PEG diffusion and concentration in the leaf apoplastic water would have induced the RWC and H2O/DW decrease and the final turgor flexion documented.  相似文献   

2.
Abstract. Theory and practice of non-steady-state portable photosynthesis instruments (LI-6000 and 6200, LI-COR Inc., Nebraska, U.S.A.) are presented. Mass balance equations for the time dependence of H2O and CO2 mol fractions within the leaf chamber were used to describe instrument function. Measurements for each run were fitted to an exponential function to estimate average rates of CO2 assimilation and transpiration during the measurement period. Stomatal conductances and intercellular CO2 mol fractions were also computed. Linear data analysis used in the LI-6200 produced similar results for assimilation rates, stomatal conductances and intercellular CO2 concentrations compared to a more rigorous nonlinear analysis, provided humidity within the chamber was kept constant during the measurement period. Instrument performance for CO2 fluxes was confirmed by injecting pure CO2 at steady rates from a microsyringe into the chamber. Miniature evaporimeters were designed to check H2O flux measurements. Significant discrepancies were observed between LI-6200 estimates of H2O fluxes and direct measurement and errors were attributed to adsorption desorption of water vapour on chamber walls or to leaks. The leaf chamber should be stored at humidities and temperatures similar to those during measurement conditions for maximum reliability of results.  相似文献   

3.
Addition of small amounts of Fe2+, Zn2+, Cu2+ and thiamine-HCl to the culture medium was required for promoting the galacto-oligosaccharide (Gal-OS)-producing activity of Sterigmatomyces elviae CBS8119, when the concentration of yeast extract in the medium was lowered to 0·1 g l−1. Galacto-oligosaccharide production using a recycling cell culture was performed in a medium containing 360 mg ml−1 of lactose supplemented with optimal concentrations of Fe2+ (1·5 mg l−1 of FeSO4.7H2O), Zn2+ (15 mg l−1 of ZnSO4.7H2O), Cu2+ (0·5 mg l−1 of CuSO4.5H2O) and thiamine-HCl (1 mg l−1 ) . Galacto-oligosaccharide production was maintained at high levels during six cycles of production, with the amount of Gal-OS produced in each cycle being more than 216 mg ml−1 (weight yield of more than 60%).  相似文献   

4.
Abstract Methane formation from formaldehyde and H2 or from carbon dioxide and H2, as performed by cell suspensions of Methanosarcina barkeri , was coupled to ATP synthesis. In correspondence with this, methane formation was inhibited by N , N '-dicyclohexylcarbodiimide (DCCD), which at the same time, caused a decrease of the intracellular ATP concentration but only a slow decrease of the membrane potential. Addition of the uncoupler tetrachlorosalicylanilide (TCS) led to a relief of the inhibition of methane formation from CH2O + H2, but not from CO2+ H2.  相似文献   

5.
The generation of ethylene from 1-aminocyclopropane-1-carboxylic acid (ACC) added to a cell-free preparation from etiolated pea ( Pisum sativum L. cv. Alaska) epicotyls was found not to be due to a specific ACC oxidase or to oxygen radicals. Rather, endogenously produced H2O and manganese ions are coupled in a reaction sequence which produces ethylene from ACC. In a model system, H2O and Mn2+ converted ACC to ethylene under conditions similar to those in the pea preparation. Ultrafiltration of the pea preparation inhibited ethylene production, but it could be reconstituted either by adding an H2O2-generating system to the ultrafiltrate or Mn2+ to the retentate. H2O2-generating systems could reconstitute ethylene formation in a heat-inactivated cell-free sample while the loss of ability to produce ethylene upon dialysis of the pea preparation correlated with the loss of Mn2+ from the sample. Studies using cell-free preparations to investigate ethylene synthesis should take care to exclude the possible involvement of H2O2 and Mn2+.  相似文献   

6.
Aims:  To find out the cumulative effect of the nutritional parameters and to enhance the production of jasmonic acid (JA) in static fermentation by Lasiodiplodia theobromae using response surface methodology (RSM).
Method and Results:  Malt extract, sucrose, NaNO3 and MgSO4.7H2O were analysed by a 30-trial central composite design using RSM for optimizing their concentrations in the medium and the effect of their mutual interaction on JA production. Sucrose and NaNO3 were found highly significant in influencing the JA production. Malt extract and MgSO4.7H2O showed an effect on the JA production in interaction with other variables. When the optimum values of the parameters obtained through RSM (19·95 g l−1 malt extract, 50 g l−1 sucrose, 7·5 g l−1 NaNO3 and 3·51 g l−1 MgSO4.7H2O) were applied, 32% increase in JA production (299 mg l−1) was observed in comparison with 225 mg l−1 of JA produced with same media components not analysed by RSM and subsequently validated the statistical model.
Conclusions:  Increase in JA production was achieved by optimizing the nutritional parameters.
Significance and Impact of the Study:  This is the first report of using RSM for optimizing a medium for JA production. It resulted in an increase in JA production without augmentation of costly additives.  相似文献   

7.
Abstract The temperature profiles have been determined for O2 reduction by activating substrates for whole cells and cell extracts of the psychrophilic, obligately anaerobic bacterium, strain B6, belonging to the Bacteroidaceae. The profiles were similar whether the cells were grown at 15 or 1°C, and also for cells harvested in the exponential or stationary phase. The H2O producing pyruvate oxidase displayed in cell-free extracts a considerably higher activity than the H2O2 producing NADH and NADPH oxidases at all temperatures in the range 30–1°C, and characteristically makes up a larger proportion of the total O2 reduction capacity the lower the temperature. It thus seems that the O2 scavenging property of the pyruvate oxidase, postulated to be utilized in a defense mechanism against the detrimental effects of the H2O2 producing pyridine nucleotide oxidases, is particularly well adapted to function at the low temperatures of the Barents Sea, from which this obligately anaerobic organism originates.  相似文献   

8.
Blood pressure was measured at both ends of the heart of Pyura praeputialis (Heller) after removing the tunic.
For posterior anterior heart waves average upstream pressures were 23–25 mm H2O (positive): corresponding downstream pressures averaged 8 mm H2O (negative). For anterior posterior waves average upstream pressures were 17–18 mm H2O (+) and downstream values were 7–8 mm H2O (-). Maximum pulse amplitudes recorded were about 30 mm H2O (upstream).
Speed of the peristaltic wave was 25-31 mm/s. In one experiment the speed was demonstrably different over the two halves of the heart (48 mm/s over the rear half and 29 mm/s over the front half).
Number of peristaltic waves per series (i.e. between successive reversals) varied from 20 to 178. Duration of each series varied from 120 s to 690 s. Wave frequency ranged from 8 to 21 per min. Reversal frequency ranged from 5 to 30 reversals per hour.
Most preparations showed periods of reduced heart activity ("rest periods") during the the 2 4 h of the experiment. All showed spasmodic contractions of the mantle muscles which caused pressure "surges" in the vascular system.
It is shown that, in both directions of beat, most or all of the pressure wave is contributed by the front half of the heart (half towards which peristaltic wave is travelling). This can be related to the "reversed spiral" structure of the heart: each "half" of the heart (i.e. each spiral) serves primarily as the pump for one direction.  相似文献   

9.
Drought and salinity (i.e. soil water stress) are the main environmental factors limiting photosynthesis and respiration and, consequently, plant growth. This review summarizes the current status of knowledge on photosynthesis and respiration under water stress. It is shown that diffusion limitations to photosynthesis under most water stress conditions are predominant, involving decreased mesophyll conductance to CO2, an important but often neglected process. A general failure of photochemistry and biochemistry, by contrast, can occur only when daily maximum stomatal conductance ( g s) drops below 0.05–0.10 mol H2O m−2 s−1. Because these changes are preceded by increased leaf antioxidant activities ( g s below 0.15–0.20 mol H2O m−2 s−1), it is suggested that metabolic responses to severe drought occur indirectly as a consequence of oxidative stress, rather than as a direct response to water shortage. As for respiration, it is remarkable that the electron partitioning towards the alternative respiration pathway sharply increases at the same g s threshold, although total respiration rates are less affected. Despite the considerable improvement in the understanding of plant responses to drought, several gaps of knowledge are highlighted which should become research priorities for the near future. These include how respiration and photosynthesis interact at severe stress, what are the boundaries and mechanisms of photosynthetic acclimation to water stress and what are the factors leading to different rates of recovery after a stress period.  相似文献   

10.
Two bursts of H2O2 production have been detected by in situ 3,3'-diaminobenzidine (DAB) staining after cutting of Lolium perenne L. leaf blades. The first burst, which occurred immediately after wounding was inhibited by Na-diethydithiocarbamate (DIECA), a Cu/Zn–superoxide dismutase (SOD) inhibitor. The second burst, which was initiated several hours later, coincided with the induction of oxalate oxidase (G-OXO) activity detected in vitro or visualized in situ by the α-chloronaphtol assay. Four genes encoding G-OXO have been identified from cDNA obtained from wounded L. perenne L . leaf blades. Comparison of protein sequences revealed more than 91% homology in the coding region between G-OXOs of the true cereals and G-OXOs of ryegrass, which is a Gramineae belonging to the tribe of Festucaceae. The wound-dependent increase of G-OXO activity in floated cut leaf blades was the result of differential induction of the four g-oxo genes. The involvement of G-OXOs in wound-induced H2O2 production coincided with the presence in leaf tissues of oxalate throughout the period of increase of G-OXO synthesis. Moreover, expression of g-oxo genes was enhanced by an exogenous supply of H2O2 or methyljasmonate (MeJa). Expression of the four g-oxo genes was also induced after in planta stinging of leaf blades. The pattern of their expression in planta was identical to that occuring in senescing leaf sheaths. These results emphasize the importance of G-OXOs in H2O2 production in oxalate-producing plant species such as ryegrass. G-OXOs might be crucial during critical events in the life of plants such as cutting and senescence by initiating H2O2-mediated defences against pathogens and foraging animals.  相似文献   

11.
Roles of H2O2 in the infection process of Magnaporthe oryzae on rice were investigated. In a leaf sheath assay for up to 48 h post-inoculation, the absence or presence of catalase in the conidia suspension was correlated with the level of accumulated H2O2 in infected leaf cells, as observed by staining with 3',3-diaminobenzidine tetrahydrochloride. In the incompatible interaction, the appearance of autofluorescence or frequency of cell death characterized by granulation (symptoms characteristic of hypersensitive responses) was not significantly affected by the presence of catalase in the conidia suspension. In the leaf blade assay, inoculation of compatible conidia in the presence of catalase produced more severe symptoms than that of conidia in the absence of catalase at 6 days post-inoculation. These results suggest that, in this host–parasite interaction, the primary role of host-produced H2O2 is in limiting hyphal growth after penetration through toxic action. Furthermore, in incompatible interactions, H2O2 is implied not to be a major mediator of hypersensitive cell death.  相似文献   

12.
The role of the ascorbate-glutathione cycle and AOS detoxification was investigated during leaf growth of defoliated and undefoliated plants of ryegrass ( Lolium perenne L. cv. Bravo). Antioxidants and related enzymatic activities were located in elongating leaf bases (ELBs) of undefoliated plants, following a decreasing gradient from basal (meristem) to distal segments, inverse to H2O2 levels. In the meristematic zone, the intense activity of the ascorbate-glutathione cycle and the supply of reducing power by the oxidative pentose phosphate pathway allowed the maintenance of both antioxidant reduction and H2O2 detoxification. BCNU (1–3 bis(2-chloroethyl)- N -nitrosourea), a glutathione reductase inhibitor, induced an increase in the meristematic zone in both H2O2 and antioxidant levels and a decrease in reduced/oxidized ratios of glutathione and ascorbate. These changes were associated with a reduced foliar regrowth activity. In the absence of BCNU, defoliation did not modify the ratios of reduced/oxidized antioxidants, although it triggered a temporary increase in H2O2 level. The results are discussed on the basis of a possible control of leaf growth by glutathione and ascorbate.  相似文献   

13.
SUMMARY: Sterilized raw sewage sludge enriched with sulphate and inoculated with pure strains of Desulphovibrio desulphuricans produced negligible sulphide. Unsterilized sludge supplemented with 7% (w/v) CaSO4.2H2O and inoculated with crude cultures of sulphate-reducing bacteria obtained from sewage yielded 1·0% S2- (wt S2- produced as H2S/vol. of raw sludge) in 6 months at 30°. By repeated subculture more active cultures developed which produced 1% S2- in 7 days and 1·2–1·9% in 28 days. Digested sludge yielded only 0·1% S2-. In semicontinuous fermentations at 30°, raw sludge without added sulphate produced 20 times its own volume of gas containing 70% CH4 and 30% CO2. When 5% CaSO4.2H2O and an active crude culture of sulphate reducers were added, gas production decreased steadily to zero. There were no differences in pH, temperature and redox potential in sludges producing methane or sulphide. The chief cause of inhibition appeared to be the action of sulphide: 0·02% soluble sulphide (S2-) totally inhibited methane formation; 0·01% S2- initially decreased gas production by one-quarter but there was a slow recovery to normal, suggesting acclimatization of the methane-producing organisms to sulphide.
Linked fermentations, in which gas from a methane fermentation swept H2S from a sulphide fermentation, gave a final gas mixture of about 60% CH4, 30% CO2 and 5–10% H2S. The yield of sulphide depended on the rate of sweeping.  相似文献   

14.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

15.
In an effort to improve the understanding of electron transfer mechanisms at the microbe–mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins demonstrated that both cytochromes undergo rapid electron exchange with FH in vitro with MtrC displaying faster transfer rates than OmcA. Immunomicroscopy with cytochrome-specific antibodies revealed that MtrC co-localizes with iron solids on the cell surface while OmcA exhibits a more diffuse distribution over the cell surface. After 3-day incubation of MR-1 with FH, pronounced reductive transformation mineral products were visible by electron microscopy. Upon further incubation, the predominant phases identified were ferrous phosphates including vivianite [Fe3(PO4)2·8H2O] and a switzerite-like phase [Mn3,Fe3(PO4)2·7H2O] that were heavily colonized by MR-1 cells with surface-exposed outer-membrane cytochromes. In the absence of both MtrC and OmcA, the cells ability to reduce FH was significantly hindered and no mineral transformation products were detected. Collectively, these results highlight the importance of the outer-membrane cytochromes in the reductive transformation of FH and support a role for direct electron transfer from the OMCs at the cell surface to the mineral.  相似文献   

16.
Active oxygen species (AOS) are believed to have important roles in plants in general and in plant—pathogen interactions in particular. They are believed to be involved in signal transduction, cell wall reinforcement, hypersensitive response (HR) and phytoalexin production, and to have direct antimicrobial effects. Since current methods are inadequate for localizing AOS in intact plant tissue, most studies have been conducted using cell suspension culture/elicitors systems. 3,3-diaminobenzidine (DAB) polymerizes instantly and locally as soon as it comes into contact with H2O2 in the presence of peroxidase, and it was found that, by allowing the leaf to take up this substrate, in-vivo and in-situ detection of H2O2 can be made at subcellular levels. This method was successfully used to detect H2O2 in developing papillae and surrounding haloes (cell wall appositions) and whole cells of barley leaves interacting with the powdery mildew fungus. Thus, H2O2 can be detected in the epidermal cell wall subjacent to the primary germ tube from 6 h after inoculation, and subjacent to the appressorium from 15 h. The earliest time point for observation of H2O2 in relation to epidermal cells undergoing HR is 15 h after inoculation, first appearing in the zones of attachment to the mesophyll cells underneath, and eventually in the entire epidermal cell. Furthermore, it was observed that proteins in papillae and HR cells are cross-linked, a process believed to be fuelled by H2O2. This cross-linking reinforces the apposition, presumably assisting the arrest of the pathogen.  相似文献   

17.
Abstract The relationshLps between relative humidity (RH) and survival rates of eggs, all larval stages and pupae of the citrus leaf-miner, Phyllooiistis citrella Stainton, were determined by laboratory experiments. The survival of the citrus leaf-miner was observed at seven levels of relative humidity from 35% RH to 95% RH at intervals of 10% RH, with 12 L: 12 D photoperiod and temperatiure (29±0.5) C. The relative humidity was controlled by saturated solutions of MgCl2 6H2O, K2CO3 2H2O, C6H12O6, NaNO2, NaCl, KCl, and Pb(NO3)2. The results showed that lower relative humidity is unfavorable for incubation of the eggs, survival of the larvae and eclosion of the pupae. The survival rates increased generally with rising of relative humidity within the range of 35% - 85% RH, and the maximum survival rates occurred at 85% RH for different life stages. The variations in hatching rates of the eggs, survival rates of the larvae and emergence rates of the pupae were great, but unimodal at different relative humidity. The effect of relative humidity on survival rates of the citrus leaf-miner could be simulated by regression analysis, using a polynomial function of three orders, and the results of fitting the model to the observed data are presented and discussed.  相似文献   

18.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

19.
Abstract— In in vitro experiments on rat hypothalamic homogenates the effects of biogenic amines such as histamine (HA), noradrenaline (NA), dopamine (DA), serotonin (5-HT) and drugs such as isoprenaline (ISP), 2-(2-pyridyl)ethylamine (H2 stimulant—Hls), 4-methyl-histamine (H2 stimulant H2s), mepyramine (H1 antagonistp Hla), cimetidine (H2 antagonist—H2a) were tested on adenylate cyclase activity. HA possessed a powerful stimulating effect on hypothalamic adenylate cyclase activity, higher than that shown by the other substances.
The stimulating effect of HA was greatest in hypothalamic tissue from male rats, while tissue from females showed only a modest stimulation. H2s, induced a greater stimulation of adenylate cyclase than Hls. On the other hand, the H2a inhibited HA stimulation to a greater extent than the Hla, Hla and H2a, when used together, completely inhibited the HA stimulation. HA may have a neurotrans-mitter role in the hypothalamus, and in this area there appears to be a mixed population of H1 and H2 receptors, with a majority of H2 receptors.  相似文献   

20.
Abstract: To examine the role of the C terminal tail in H2 receptor regulation, three cDNAs, encoding truncated histamine H2 receptor mutants (H2T295, H2T307, and H2T341), were constructed and stably transfected in Chinese hamster ovary (CHO) cells. The amino acids before position 307 appear to be necessary for proper receptor transport or folding, as no detectable H2 receptor binding of the H2T295 was observed after transfection. Truncation of the C terminal tail by 51 amino acids (H2T307) did not affect the binding properties of H2 antagonists and histamine or histamine-induced signaling. Yet, removal of 17 amino acids generated a mutant receptor (H2T341), which was able to form a ternary complex but was unable to fully activate the Gs protein on histamine exposure. Agonist-induced but not the cyclic AMP-dependent H2 receptor down-regulation was more profound for the H2T307 receptor, indicating that different structural elements of the H2 receptor protein are involved in the cyclic AMP-dependent and independent pathways of H2 receptor down-regulation. Taken together, in this study we identified regions in the C terminal tail of the H2 receptor that act as positive and/or negative signals in H2 receptor signaling and down-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号