首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of quantum yields of electron transport from photosystem II (PSII) ([phi]II, determined from chlorophyll a fluorescence) and CO2 assimilation ([phi]CO2, apparent quantum yield for CO2 assimilation) were determined simultaneously in vivo. With C4 species representing NADP-malic enzyme, NAD-malic enzyme, and phosphoenolpyruvate carboxykinase subgroups, the ratio of [phi]II/[phi]CO2 was constant over the temperature range from 15 to 40[deg]C at high light intensity (1100 [mu]mol quanta m-2 s-1). A similar response was obtained at low light intensity (300 [mu]mol quanta m-2 s-1), except the ratio of [phi]II/[phi]CO2 increased at high temperature. When the true quantum yield for CO2 fixation ([phi]CO2*) was calculated by correcting for respiration in the light (estimated from temperature dependence of dark respiration), the ratio of [phi]II/[phi]C02* remained constant with varying temperature and under both light intensities in all C4 species examined. Because the [phi]II/[phi]CO2* ratio was the same in C4 monocots representing the three subgroups, the ratio was not affected by differences in the bio-chemical mechanism of concentrating CO2 in the bundle sheath cells. The results suggest that PSII activity is closely linked to the true rate of CO2 fixation in C4 plants. The close relationship between [phi]II and [phi]CO2* in C4 species under varying temperature and light intensity conditions is apparently due to a common low level of photorespiration and a primary requirement for reductive power in the C3 pathway. In contrast, in a C3 plant the [phi] II/[phi]CO2* ratio is higher under normal atmospheric conditions than under nonphotorespiratory conditions and it increases with rising temperature. This decrease in efficiency in utilizing energy derived from PSII for CO2 fixation is due to an increase in photorespiration. In both the C3 and C4 species, photochemistry is limited under low temperature, and thus excess energy must be dissipated by nonphotochemical means.  相似文献   

2.
Masle J  Hudson GS  Badger MR 《Plant physiology》1993,103(4):1075-1088
Growth of the R1 progeny of a tobacco plant (Nicotiana tabacum) transformed with an antisense gene to the small subunit of ribulose-1,5-carboxylase/oxygenase (Rubisco) was analyzed under 330 and 930 [mu]bar of CO2, at an irradiance of 1000 [mu]mol quanta m-2 s-1. Rubisco activity was reduced to 30 to 50% and 13 to 18% of that in the wild type when one and two copies of the antisense gene, respectively, were present in the genome, whereas null plants and wild-type plants had similar phenotypes. At 330 [mu]bar of CO2 all antisense plants were smaller than the wild type. There was no indication that Rubisco is present in excess in the wild type with respect to growth under high light. Raising ambient CO2 pressure to 930 [mu]bar caused plants with one copy of the DNA transferred from plasmid to plant genome to achieve the same size as the wild type at 330 [mu]bar, but plants with two copies remained smaller. Differences in final size were due mostly to early differences in relative rate of leaf area expansion (m2 m-2 d-1) or of biomass accumulation (g g-1 d-1): within less than 2 weeks after germination relative growth rates reached a steady-state value similar for all plants. Plants with greater carboxylation rates were characterized by a higher ratio of leaf carbon to leaf area, and at later stages, they were characterized also by a relatively greater allocation of structural and nonstructural carbon to roots versus leaves. However, these changes per se did not appear to be causing the long-term insensitivity of relative growth rates to variations in carboxylation rate. Nor was this insensitivity due to feedback inhibition of photosynthesis in leaves grown at high partial pressure of CO2 in the air (pa) or with high Rubisco activity, even when the amount of starch approached 40% of leaf dry weight. We propose that other intrinsic rate-limiting processes that are independent of carbohydrate supply were involved. Under plentiful nitrogen supply, reduction in the amount of nitrogen invested in Rubisco was more than compensated for by an increase in leaf nitrate. Nitrogen content of organic matter, excluding Rubisco, was unaffected by the antisense gene. In contrast, it was systematically lower at elevated pa than at normal pa. Combined with the positive effects of pa on growth, this resulted in the single-dose antisense plants growing as fast at 930 [mu]bar of CO2 as the wild-type plants at 330 [mu]bar of CO2 but at a lower organic nitrogen cost.  相似文献   

3.
The light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in 16 species of C4 plants representing all three biochemical subtypes and a variety of taxonomic groups. Rubisco regulation was assessed by measuring (a) the ratio of initial to total Rubisco activity, which reflects primarily the carbamylation state of the enzyme, and (b) total Rubisco activity per mol of Rubisco catalytic sites, which declines when 2-carboxyarabinitol 1-phosphate (CA1P) binds to carbamylated Rubisco. In all species examined, the activity ratio of Rubisco declined with a reduction in light intensity, although substantial variation was apparent between species in the degree of Rubisco deactivation. No relationship existed between the degree of Rubisco deactivation and C4 subtype. Dicots generally deactivated Rubisco to a greater degree than monocots. The total activity of Rubisco per catalytic site was generally independent of light intensity, indicating that CA1P and other inhibitors are not major contributors to the light-dependent regulation of Rubisco activity in C4 plants. The light response of the activity ratio of Rubisco was measured in detail in Amaranthus retroflexus, Brachiaria texana, and Zea mays. In A. retroflexus and B. texana, the activity ratio declined dramatically below a light intensity of 400 to 500 [mu]mol of photons m-2 s-1. In Z. mays, the activity ratio of Rubisco was relatively insensitive to light intensity compared with the other species. In A. retroflexus, the pool size of ribulose bisphosphate (RuBP) declined with reduced light intensity except between 50 and 500 [mu]mol m-2 s-1, when the activity ratio of Rubisco was light dependent. In Z. mays, by contrast, the pool size of RuBP was light dependent only below 350 [mu]mol m-2 s-1. These results indicate that, in response to changes in light intensity, most C4 species regulate Rubisco by reversible carbamylation of catalytic sites, as commonly observed in C3 plants. In a few species, notably Z. mays, Rubisco is not extensively regulated in response to changes in light intensity, possibly because the activity of the CO2 pump may become limiting for photosynthesis at subsaturating light intensity.  相似文献   

4.
Inhibition of net carbon assimilation rates during growth at elevated CO2 was studied in transgenic tobacco (Nicotiana tabacum L.) plants containing zero to two copies of antisense DNA sequences to the small subunit polypeptide (rbcS) gene of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). High- and low-Rubisco tobacco plants were obtained from the selfed progeny of the original line 3 transformant (S.R. Rodermel, M.S. Abbott, L. Bogorad [1988] Cell 55: 673-681). Assimilation rates of high- and low-Rubisco tobacco plants increased 22 and 71%, respectively, when transferred from 35- to 70-Pa CO2 chamber air at 900 [mu]mol m-2 s-1 photon flux density. However, CO2-dependent increases of net carbon assimilation rates of high- and low-Rubisco plants virtually disappeared after 9 d of growth in elevated CO2 chamber air. Total above-ground dry matter production of high- and low-Rubisco plants was 28 and 53% greater, respectively, after 9 d of growth at 70 Pa compared with 35 Pa CO2. Most of this dry weight gain was due to increased specific leaf weight. Rubisco activity, Rubisco protein, and total chlorophyll were lower in both high- and low-Rubisco plants grown in enriched compared with ambient CO2 chamber air. Soluble leaf protein also decreased in response to CO2 enrichment in high- but not in low-Rubisco tobacco plants. Decreased Rubisco activities in CO2-adapted high- and low-Rubisco plants were not attributable to changes in activation state of the enzyme. Carbonic anhydrase activities and subunit levels measured with specific antibodies were similar in high- and low-Rubisco tobacco plants and were unchanged by CO2 enrichment. Collectively, these findings suggested that photosynthetic acclimation to enriched CO2 occurred in tobacco plants either with or without transgenically decreased Rubisco levels and also indicated that the down-regulation of Rubisco in CO2-adapted tobacco plants was related to decreased specific activity of this enzyme.  相似文献   

5.
Increased levels of solar ultraviolet (290-320 nm) (UV-B) radiation could have profound effects on plant proteins because the aromatic amino acids in proteins absorb strongly in this spectral region. We have investigated the effects of UV-B radiation on plant proteins and have observed a novel 66-kD protein. This product was formed in vivo when Brassica napus L. plants grown for 21 d in 65 [mu]mol m-2 s-1 photosynthetically active radiation were subsequently exposed to 65 [mu]mol m-2 s-1 photosynthetically active radiation plus UV-B radiation (1.5 [mu]mol m-2 s-1). The protein appeared after 4 h of UV-B irradiation and accumulated during the next 16 h in UV-B. The 66-kD protein cross-reacted with an antiserum against the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) holoenzyme. Analysis of soluble leaf proteins revealed that the 66-kD product had a number of isoforms corresponding closely to those of the large subunit of Rubisco (LSU). Partial proteolytic digests of the LSU and the 66-kD protein resulted in an equivalent pattern of protein fragments, leading to the conclusion that the 66-kD protein was a photomodified form of the LSU. A similar high molecular mass variant of Rubisco was observed in soluble protein extracts from leaves of tomato (Lycopersicon esculentum), tobacco (Nicotiana tabacum), and pea (Pisum sativum L.) plants treated in vivo with UV-B, suggesting that it might be a common product, at least among C3 plants. It is interesting that the 66-kD product appears to be generated after incorporation of the LSU into holoenzyme complexes. This conclusion was drawn from two lines of evidence. First, the LSU variant co-purified with holoenzyme complexes isolated by nondenaturing polyacrylamide gel electrophoresis. Second, a UV-B-specific 66-kD protein did not accumulate in a tobacco mutant that synthesizes the Rubisco subunits but does not assemble them into normal holoenzyme complexes.  相似文献   

6.
Makino A  Nakano H  Mae T 《Plant physiology》1994,105(4):1231-1238
Effects of growth temperature on the photosynthetic gas-exchange rates and their underlying biochemical properties were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under day/night temperature regimes of 18/15[deg]C, 23/18[deg]C, and 30/23[deg]C and all photosynthetic measurements were made at a leaf temperature of 25[deg]C and an irradiance of 1800 [mu]mol quanta m-2 s-1. Growth temperature affected the photosynthetic CO2 response curve. The relative ratio of the initial slope to the CO2-saturated photosynthesis increased with rising growth temperature. This was caused mainly by an increase in CO2-limited photosynthesis for a given leaf nitrogen content with rising growth temperature. However, there was no difference in ribulose-1,5-bisphosphate carboxylase (Rubisco) content at any given leaf nitrogen content among temperature treatments. In addition, the activation state and catalytic turnover rate of Rubisco were not affected by growth temperature. The increase in CO2-limited photosynthesis with rising growth temperature was the result of an increase in the CO2 transfer conductance between the intercellular airspaces and the carboxylation sites. The amounts of total chlorophyll and light-harvesting chlorophyll a/b protein II increased for the same leaf nitrogen content with rising growth temperature, but the amounts of cytochrome f and coupling factor 1 and the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were the same between plants grown at 23/18[deg]C and those grown at 30/23[deg]C. Similarly, CO2-saturated photosynthesis was not different for the same leaf nitrogen content between these treatments. For the 18/15[deg]C-grown plants, a slight decrease in the amounts of cytochrome f and coupling factor 1 and an increase in the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were found, but these were not reflected in CO2-saturated photosynthesis.  相似文献   

7.
Early iron deficiency stress response in leaves of sugar beet.   总被引:6,自引:0,他引:6       下载免费PDF全文
T L Winder  J N Nishio 《Plant physiology》1995,108(4):1487-1494
Iron nutrient deficiency was investigated in leaves of hydroponically grown sugar beets (Beta vulgaris) to determine how ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression is affected when thylakoid components of photosynthesis are diminished. Rubisco polypeptide content was reduced by 60% in severely iron-stressed leaves, and the reduction was directly correlated to chlorophyll content. The concentration of Rubisco protein in iron-stressed leaves was found to be regulated by availability of mRNAs, and CO2 fixation by Rubisco was reduced from 45 mumol CO2 m-2 s-1 in extracts from iron-sufficient leaves to 20 mumol CO2 m-2 s-1 in extracts from severely stressed leaves. The rate of CO2 fixation was directly correlated to leaf chlorophyll content. Rubisco in iron-sufficient control leaves was 59% activated, whereas in severely stressed leaves grown under the same light, Rubisco was 43% activated. RNA synthesis was reduced by about 50% in iron-deficient leaves, but 16S and 25S rRNA and ctDNA were essentially unaffected by iron stress.  相似文献   

8.
Enrichment of CO2 to 46 mmol m-3 (1000 mm3 dm-3) at a moderate photosynthetic photon flux (PPF) of 450 micromoles m-2 s-1 stimulated fresh and dry weight gain of lettuce leaves 39% to 75% relative to plants at 16 mmol m-3 CO2 (350 mm3 dm-3). Relative growth rate (RGR) was stimulated only during the first several days of exponential growth. Elevating CO2 above 46 mmol m-3 at moderate PPF had no further benefit. However, high PPF of 880-900 micromoles m-2 s-1 gave further, substantial increases in growth, RGR, net assimilation rate (NAR) and photosynthetic rate (Pn), but a decrease in leaf area ratio (LAR), at 46 or 69 mmol m-3 (1000 or 1500 mm3 dm-3) CO2, the differences being greater at the higher CO2 level. Enrichment of CO2 to a supraoptimal level of 92 mmol m-3 (2000 mm3 dm-3) at high PPF increased leaf area and LAR, decreased specific leaf weight, NAR and Pn and had no effect on leaf, stem and root dry weight or RGR relative to plants grown at 69 mmol m-3 CO2 after 8 d of treatment. The results of the study indicate that leaf lettuce growth is most responsive to a combination of high PPF and CO2 enrichment to 69 mmol m-3 for several days at the onset of exponential growth, after which optimizing resources might be conserved.  相似文献   

9.
Maxwell DP  Falk S  Huner N 《Plant physiology》1995,107(3):687-694
The basis of the increased resistance to photoinhibition upon growth at low temperature was investigated. Photosystem II (PSII) excitation pressure was estimated in vivo as 1 - qp (photochemical quenching). We established that Chlorella vulgaris exposed to either 5[deg]C/150 [mu]mol m-2 s-1 or 27[deg]C/2200 [mu]mol m-2 s-1 experienced a high PSII excitation pressure of 0.70 to 0.75. In contrast, Chlorella exposed to either 27[deg]C/150 [mu]mol m-2 s-1 or 5[deg]C/20 [mu]mol m-2 s-1 experienced a low PSII excitation pressure of 0.10 to 0.20. Chlorella grown under either regime at high PSII excitation pressure exhibited: (a) 3-fold higher light-saturated rates of O2 evolution; (b) the complete conversion of PSII[alpha] centers to PSII[beta] centers; (c) a 3-fold lower epoxidation state of the xanthophyll cycle intermediates; (d) a 2.4-fold higher ratio of chlorophyll a/b; and (e) a lower abundance of light-harvesting polypeptides than Chlorella grown at either regime at low PSII excitation pressure. In addition, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 exhibited resistance to photoinhibition comparable to that of cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 and were 3- to 4-fold more resistant to photoinhibition than cells grown at either regime at low excitation pressure. We conclude that increased resistance to photoinhibition upon growth at low temperature reflects photosynthetic adjustment to high excitation pressure, which results in an increased capacity for nonradiative dissipation of excess light through zeaxanthin coupled with a lower probability of light absorption due to reduced chlorophyll per cell and decreased abundance of light-harvesting polypeptides.  相似文献   

10.
Brown RH  Byrd GT 《Plant physiology》1993,103(4):1183-1188
Low conductance to CO2 of bundle sheath cells is required in C4 photosynthesis to maintain high [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Elevated [CO2] allows high CO2 assimilation rates by this enzyme and prevents Rubisco oxygenase activity and O2 inhibition of carboxylation. Bundle sheath conductance to CO2 was estimated by chemically inhibiting phosphoenolpyruvate carboxylase and calculating the slope of the linear response of leaf CO2 uptake to [CO2]. The inhibitor 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate was supplied to detached leaves of Panicum maximum, Panicum miliaceum, and Sorghum bicolor at 4 mM. Uptake of CO2 was measured at 210 mL L-1 O2 over the CO2 concentration range of 0.34 to 28 mL L-1. Without the inhibitor, CO2 uptake increased steeply at low [CO2] and saturated at about 1 mL L-1. After inhibition, CO2 uptake was a linear function of [CO2] over much of the range tested. The slope of this CO2 response, taken as bundle sheath conductance, was 2.35, 1.96, and 1.13 mmol m-2 s-1 for P. maximum, P. miliaceum, and S. bicolor, respectively, on a leaf area basis. Conductance based on bundle sheath area was 0.76, 0.93, and 0.54 mmol m-2 s-1, respectively. Uptake of CO2 by leaves of P. maximum supplied with the inhibitor was not affected by reduction of [O2] from 210 to 20 mL L-1 over the range of [CO2] used. Because [CO2] in bundle sheath cells of inhibited leaves is likely to be much lower than ambient, the lack of O2 sensitivity of CO2 uptake cannot be ascribed to lack of O2 reaction with ribulose bisphosphate and is probably due to the low conductance of bundle sheath cells, especially at low ambient [CO2]. The likely result of reducing [O2] from 210 to 20 mL L-1 is to stimulate carboxylation of ribulose bisphosphate, thus further reducing [CO2] in bundle sheath cells and increasing CO2 diffusion to these cells from the mesophyll. However, the increase in diffusion is greatly limited by low conductance of the bundle sheath cell walls. Calculations based on estimated bundle sheath conductance show that changes in bundle sheath [CO2] of 0.085 to 0.5 mL L-1, which might be associated with reduced [O2], would have a negligible effect on CO2 uptake.  相似文献   

11.
Chlorella vulgaris grown at 5[deg]C/150 [mu]mol m-2 s-1 mimics cells grown under high irradiance (27[deg]C/2200 [mu]mol m-2 s-1). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feed-back mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6-phosphate and sucrose/starch indicated that cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6- bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feed-back on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed.  相似文献   

12.
Characteristics related to C4 photosynthesis were studied in reciprocal F1 hybrids and F2 plants from Flaveria brownii (C4 like) and Flaveria linearis (C3-C4). The reciprocal F1 plants differed in 13C/12C ratios of leaves and the percentage of 14C initially incorporated into C4 acids, being more like the pollen parents in these traits. They did not differ in apparent photosynthesis or in O2 inhibition of apparent photosynthesis and differed only slightly in CO2 compensation concentration at 175 [mu]mol quanta m-2 s-1 and 400 mL L-1 O2. The 13C/12C ratios of 78 F2 progeny from the two F1 plants exhibited a normal distribution centered between those of the parents, with a few values slightly higher and lower than the parents. Apparent photosynthesis at 130 [mu]L L-1 CO2 and inhibition of photosynthesis by O2 was nearly normally distributed in the F2 population, but no values for F2 plants approached those for F. brownii (15.4 [mu]mol m-2 s-1 and 7.8%, respectively). Distribution of the CO2 compensation concentration measured at 1000 [mu]mol quanta m-2 s-1 and 400 mL L-1 of O2 in the F2 population was skewed toward F. brownii with 72% of the progeny having values <9 [mu]L of CO2 L-1 compared to 1.5 and 27.2 [mu]L L-1 for F. brownii and F. linearis, respectively. Correlations among traits of F2 plants were low (coefficients of 0.30 to -0.49), indicating that the C4- related traits are not closely linked in segregating populations. Plants in the F2 population selected for high or low apparent photosynthesis at 130 [mu]L of CO2 L-1 (six each) did not rank consistently high or low for 13C/12C ratios, O2 inhibition of apparent photosynthesis, CO2 compensation concentration, or activities of phosphoenolpyruvate carboxylase or NADP-malic enzyme. This study confirms results of earlier work that indicates independent segregation of C4 traits and also shows that the C4-like parental type can be recovered, at least for some characteristics (13C/12C ratio), in segregating populations. Recovery of fully functional C4 plants awaits further experimentation with C4 x C3 or C4 x C3-C4 hybrid plants that produce fertile progeny.  相似文献   

13.
Roden JS  Ball MC 《Plant physiology》1996,111(3):909-919
Two species of eucalyptus (Eucalyptus macrorhyncha and Eucalyptus rossii) were grown for 8 weeks in either ambient (350 [mu]L L-1) or elevated (700 [mu]L L-1) CO2 concentrations, either well watered or without water additions, and subjected to a daily, 3-h high-temperature (45[deg]C, maximum) and high-light (1250 [mu]mol photons m-2 s-1, maximum) stress period. Water-stressed seedlings of E. macrorhyncha had higher leaf water potentials when grown in elevated [CO2]. Growth analysis indicated that increased [CO2] may allow eucalyptus species to perform better during conditions of low soil moisture. A down-regulation of photosynthetic capacity was observed for seedlings grown in elevated [CO2] when well watered but not when water stressed. Well-watered seedlings grown in elevated [CO2] had lower quantum efficiencies as measured by chlorophyll fluorescence (the ratio of variable to maximal chlorophyll fluorescence [Fv/Fm]) than seedlings grown in ambient [CO2] during the high-temperature stress period. However, no significant differences in Fv/Fm were observed between CO2 treatments when water was withheld. The reductions in dark-adapted Fv/Fm for plants grown in elevated [CO2] were not well correlated with increased xanthophyll cycle photoprotection. However, reductions in the Fv/Fm were correlated with increased levels of nonstructural carbohydrates. The reduction in quantum efficiencies for plants grown in elevated [CO2] is discussed in the context of feedback inhibition of electron transport associated with starch accumulation and variation in sink strength.  相似文献   

14.
Growth and N Allocation in Rice Plants under CO2 Enrichment   总被引:8,自引:1,他引:7       下载免费PDF全文
Makino A  Harada M  Sato T  Nakano H  Mae T 《Plant physiology》1997,115(1):199-203
The effects of CO2 enrichment on growth and N allocation of rice (Oryza sativa L.) were examined. The plants were grown hydroponically in growth chambers with a 14-h photoperiod (1000 [mu]mol quanta m-2 s-1) and a day/night temperature of 25/20[deg]C. From the 28th to 70th d after germination, the plants were exposed to two CO2 partial pressures, namely 36 and 100 Pa. The CO2 enrichment increased the final biomass, but this was caused by a stimulation of the growth rate during the first week of the exposure to elevated CO2 partial pressures. The disappearance of the initial stimulation of the growth rate was associated with a decreased leaf area ratio. Furthermore, CO2 enrichment decreased the investment of N in the leaf blades, whereas the N allocation into the leaf sheaths and roots increased. Thus, the decrease in leaf N content by CO2 enrichment was not due to dilution of N caused by a relative increase in the plant biomass but was due to the change in N allocation at the whole-plant level. We conclude that the growth responses of rice to CO2 enrichment are mainly controlled by leaf area expansion and N allocation into leaf blades at the whole-plant level.  相似文献   

15.
An important question concerning the role of carboxyarabinitol 1-phosphate (CA1P) metabolism in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity is the extent to which CA1P is bound to Rubisco in vivo. We report here the development of an extraction procedure using ammonium sulfate that stabilizes CA1P bound to Rubisco. This procedure exploits the ability of sulfate to bind at the catalytic site of Rubisco and to competitively balance the binding and release of CA1P from Rubisco. In darkened bean leaves about 75% of the Rubisco catalytic sites were found to be bound with CA1P. This confirms previous indirect estimates from gas exchange measurements. We have used this extraction procedure to examine CA1P-Rubisco interactions in bean during a natural transition from darkness to light. With increasing light intensity following sunrise, CA1P degradation proceeded in two distinct phases: first, a majority of the unbound CA1P pool was degraded at very low light levels ([less than or equal to]30 [mu]mol quanta m-2 s-1); second, CA1P initially bound to Rubisco was then degraded at increasing light levels (>30 [mu]mol quanta m-2 s-1). These results indicate that there is a low-fluence activation of CA1P phosphatase that can occur prior to CA1P release by Rubisco activase. This activation may be mediated by NADPH. During sunrise in bean, the level of the catalytically competent form of Rubisco was regulated by CA1P metabolism.  相似文献   

16.
A cDNA encoding myo-inositol O-methyltransferase (IMT1) has been transferred into Nicotiana tabacum cultivar SR1. During drought and salt stress, transformants (I5A) accumulated the methylated inositol D-ononitol in amounts exceeding 35 [mu]mol g-1 fresh weight In I5A, photosynthetic CO2 fixation was inhibited less during salt stress and drought, and the plants recovered faster than wild type. One day after rewatering drought-stressed plants, I5A photosynthesis had recovered 75% versus 57% recovery with cultivar SR1 plants. After 2.5 weeks of 250 mM NaCl in hydroponic solution, I5A fixed 4.9 [plus or minus] 1.4 [mu]mol CO2 m-2 s-1, whereas SR1 fixed 2.5 [plus or minus] 0.6 [mu]mol CO2 m-2 s-1. myo-Inositol, the substrate for IMT1, increases in tobacco under stress. Preconditioning of I5A plants in 50 mM NaCl increased D-ononitol amounts and resulted in increased protection when the plants were stressed subsequently with 150 mM NaCl. Pro, Suc, Fru, and Glc showed substantial diurnal fluctuations in amounts, but D-ononitol did not. Plant transformation resulting in stress-inducible, stable solute accumulation appears to provide better protection under drought and salt-stress conditions than strategies using osmotic adjustment by metabolites that are constitutively present.  相似文献   

17.
Structural and functional alterations to the photosynthetic apparatus after growth at low temperature (5[deg]C) were investigated in the green alga Chlorella vulgaris Beijer. Cells grown at 5[deg]C had a 2-fold higher ratio of chlorophyll a/b, 5-fold lower chlorophyll content, and an increased xanthophyll content compared to cells grown at 27[deg]C even though growth irradiance was kept constant at 150 [mu]mol m-2 s-1. Concomitant with the increase in the chlorophyll a/b ratio was a lower abundance of light-harvesting polypeptides in 5[deg]C-grown cells as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by western blotting.The differences in pigment composition were found to be alleviated within 12 h of transferring 5[deg]C-grown cells to 27[deg]C. Furthermore, exposure of 5[deg]C-grown cells to a 30-fold lower growth irradiance (5 [mu]mol m-2 s-1) resulted in pigment content and composition similar to that in cells grown at 27[deg]C and 150 [mu]mol m-2 s-1. Although both cell types exhibited similar measuring-temperature effects on CO2-saturated O2 evolution, 5[deg]C-grown cells exhibited light-saturated rates of O2 evolution that were 2.8-and 3.9-fold higher than 27[deg]C-grown cells measured at 27[deg]C and 5[deg]C, respectively. Steady-state chlorophyll a fluorescence indicated that the yield of photosystem II electron transport of 5[deg]C-grown cells was less temperature sensitive than that of 27[deg]C-grown cells. This appears to be due to an increased capacity to keep the primary, stable quinone electron acceptor of photosystem II (QA) oxidized at low temperature in 5[deg]C- compared with 27[deg]C-grown cells regardless of irradiance. We conclude that Chlorella acclimated to low temperature adjusts its photosynthetic apparatus in response to the excitation pressure on photosystem II and not to the absolute external irradiance. We suggest that the redox state of QA may act as a signal for this photosynthetic acclimation to low temperature in Chlorella.  相似文献   

18.
Based on the curvilinear relationship between leaf nitrogen content and the initial slope of the response of CO(2) assimilation (A:) to intercellular CO(2) concentrations (C:(i)) in apple, it is hypothesized that Rubisco activation state decreases with increasing leaf N content and this decreased activation state accounts for the curvilinear relationship between leaf N and CO(2) assimilation. A range of leaf N content (1.0-5.0 g m(-2)) was achieved by fertilizing bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees for 45 d with different N concentrations, using a modified Hoagland's solution. Analysis of A:/C:(i) curves under saturating light indicated that CO(2) assimilation at ambient CO(2) fell within the Rubisco limitation region of the A:/C:(i) curves, regardless of leaf N status. Initial Rubisco activity showed a curvilinear response to leaf N. In contrast, total Rubisco activity increased linearly with increasing leaf N throughout the leaf N range. As a result, Rubisco activation state decreased with increasing leaf N. Both light-saturated CO(2) assimilation at ambient CO(2) and the initial slope of the A:/C:(i) curves were linearly related to initial Rubisco activity, but curvilinearly related to total Rubisco activity. The curvatures in the relationships of both light-saturated CO(2) assimilation at ambient CO(2) and the initial slope of the A:/C:(i) curves with total Rubisco activity were more pronounced than in their relationships with leaf N. This was because the ratio of total Rubisco activity to leaf N increased with increasing leaf N. As leaf N increased, photosynthetic N use efficiency declined with decreasing Rubisco activation state.  相似文献   

19.
Nilsen ET  Sharifi MR 《Plant physiology》1994,105(4):1385-1391
Photosynthesis (Pn) was measured in stems of two desert legumes, Caesalpinia virgata at a low elevation site (118 m) in the Sonoran Desert and Senna armata at a higher elevation (950 m) in the Mojave Desert. The lower elevation site experienced higher spring and summer temperatures than the higher elevation site, but the air vapor pressure, irradiance, and rainfall patterns were similar. Mid-morning maximum stem Pn was highest in May for C. virgata (7.8 [mu]mol m-2 s-1) and in July for S. armata (5.8 [mu]mol m-2 s-1). The seasonal variation in maximum stem Pn was not associated with changes in bulk tissue water potential or chlorenchyma tissue nitrogen concentration. The main environmental regulators of seasonal stem Pn were temperature and leaf to air vapor pressure gradient. Light-response curves indicated no major differences in apparent quantum yield or light compensation point between the spring and summer, but light-saturated stem Pn at ambient temperature decreased for C. virgata between these seasons. The optimal temperature for stem Pn remained the same for both species between the spring and the summer. However, stem Pn of both species increased at all temperatures between the spring and summer. Potential stem Pn under optimal conditions and CO2-saturated stem Pn increased for both species between spring and summer. The increase in stem Pn potential allowed these species to maintain stem Pn during the summer even though stem Pn responses to temperature and vapor pressure did not acclimate to seasonal climatic conditions.  相似文献   

20.
Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5[deg]C and moderate irradiance (250 [mu]mol m-2 s-1) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20[deg]C and 250 [mu]mol m-2 s-1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - qP, the coefficient of photochemical quenching. Plants grown at 20[deg]C and a high irradiance (800 [mu]mol m-2 s-1) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrosephosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号