首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Strain variations among mice in terms of cytosolic DT-diaphorase activity were studied in liver, kidney, stomach and heart tissues with or without the administration of 3-tert-butyl-4-hydroxyanisole (BHA). 2. BHA induced DT-diaphorase activity in all strains examined, and the magnitude of induction varied depending on the strain and tissue. Among the 10 inbred strains tested, BALB/c and C57BL mice showed relatively large magnitudes of induction for liver DT-diaphorase, whereas C3H and CBA mice showed relatively small magnitudes. 3. Results of examinations of BALB/c-C3H-F1, -F2 and C57BL-CBA-F1 mice revealed that smaller magnitudes of induction of liver DT-diaphorase were inherited essentially as a dominant trait. The hereditary trait could be adequately explained by postulating two gene loci that regulate the magnitude of induction. 4. The possible significance of DT-diaphorase activity in chemical carcinogenesis was discussed.  相似文献   

2.
1. Strain variations among female rats in terms of cytosolic DT-diaphorase activity were studied in liver, heart and glandular stomach tissues with or without administration of 3-tert-butyl-4-hydroxyanisole (BHA). 2. BHA induced liver DT-diaphorase activity in all strains examined, and both the basal and induced activities varied according to strain. Among the five strains tested, Brown Norway (BN) and Sprague-Dawley (SD) rats showed relatively high levels of enzyme activity in the liver, whereas Fischer (F344) rats showed a relatively low level of activity. Results of examination of Fischer-BN-F1 rats indicated that a lower level of liver DT-diaphorase activity was inherited essentially as a dominant trait. 3. Liver DT-diaphorase activity in male rats was significantly lower than in female rats. Small strain variations of the activity, if any, were observed in the heart and stomach cytosolic fractions with or without induction by BHA. The magnitude of induction by BHA was also small, if any, in heart and stomach cytosolic fractions. 4. From these and other observations, we discussed the differences between rats and mice in these strain and tissue variations of DT-diaphorase activity, and also the possible significance of liver DT-diaphorase activity in carcinogenesis by azo dyes.  相似文献   

3.
Aryl hydrocarbon hydroxylase (AHH), a typical example of mixed-function oxidase system, was studied in rat brain mitochondria. The enzyme was found to require oxygen and NADH for optimal expression of the activity. Coaddition of NADPH in the incubation system containing NADH resulted in an additive effect on the enzyme activity. NADH- and NADPH-dependent mitochondrial AHH activity was linear with respect to protein concentration and incubation time. The enzyme exhibited a sharp optima at pH 7.6. Specific activity of NADH-dependent mitochondrial AHH in rat brain was 3–4 and 8–11 times higher than that of NADPH-dependent mitochondrial and microsomal enzyme activity, respectively. Of the species investigated, NADH-dependent mitochondrial AHH followed the order: mice ? guinea pig > rat, while NADPH-supported mitochondrial AHH was in the order: rat > guinea pig ? mice. Specific activity of NADH-dependent mitochondrial AHH in various rat brain regions was similar with the exception of olfactory lobes which exhibited 60% higher activity than other region. When total region activities were added approximately whole brain activity was recovered. The apparent Km value of NADH-dependent mitochondrial AHH was 1.18 μm with benzo(a)pyrene as a substrate. This Km value was five to six times lower than that of NADPH-dependent microsomal AHH in rat brain (6.66 μm). NADH-dependent mitochondrial AHH was inhibited by KCN in a concentration-dependent manner while NADPH-supported mitochondrial AHH did not reveal any sensitivity to cyanide. Brain microsomal NADH as well as NADPH-supported AHH was also inhibited by KCN in a concentration-dependent manner. Carbon monoxide inhibited NADH-dependent mitochondrial AHH activity (48%) and had no effect on NADPH-dependent mitochondrial enzyme. Mitochondrial NADH and NADPH-dependent AHH activities were induced by 3-methylcholanthrene (64–73%) and benzo(a)pyrene (91–92%) pretreatments while no induction occurred with phenobarbital administration. 1-Benzylimidazole, SKF 525 A, metyrapone, and α-naphthoflavone inhibited both basal and 3-methylcholanthreneinduced NADH-dependent mitochondrial AHH activity. α-Naphthoflavone was more effective in inhibiting 3-methylcholanthrene-stimulated rat brain NADH-dependent mitochondrial AHH. Mitochondrial NADH-dependent AHH activity increased gradually with the onset of development and attained a steady state after 49–56 days of age. An increase of eight- to ninefold in the specific enzyme activity was observed between 7- and 56-day-old rats. No significant increase in brain mitochondrial AHH activity was observed between 56- and 91-day-old rats.  相似文献   

4.
The distribution of cytosolic activity of nicotinamide:S-adenosylmethionine methyltransferase (nicotinamide methylase, EC 2.1.1.1) in normal tissues from adult rat and mouse and in tumors and the change in the enzyme activity during the the development of rat tissues were studied. (1) Rat liver exhibited the highest nicotinamide methylase activity among all adult tissues tested; other rat tissues, like adrenal, pancreas, kidney, brain and mouse tissues, had only less than 15% of the adult rat liver activity. (2) 3 days before birth, fetal liver showed a very low nicotinamide methylase activity (2% of adult rat liver), which, however, increased already 1 day before birth and reached the adult level on the day 28 after birth. (3) In a variety of hepatomas and ascites tumors, an inverse correlation, with some exceptions, between tumor growth rate and nicotinamide methylase activity could be seen. In all hepatomas, with the exception of Morris hepatoma 5123tc, nicotinamide methylase activity was significantly decreased in comparison to normal adult rat liver. The highly malignant Zajdela hepatoma, Yoshida sarcoma, sarcoma 180 and Ehrlich ascites tumor methylated nicotinamide only at a negligibly low rate. (4) Cultured RLC cells (an established rat liver cell line) from the stationary growth phase or G1-arrested RLC cells had about half of the adult rat liver activity, yet the activity was 70% higher than that of the logarithmically growing RLC cells.  相似文献   

5.
Aryl hydrocarbon hydroxylase (AHH, cytochrome P1-450) is induced in chick liver very early during embryonic development if embryos are treated with 3-methylcholanthrene–type compounds such as 3,4,3′4′-tetrachlorobiphenyl. In mammals, AHH induction is known to be mediated by the Ah receptor. Liver from embryonic and newly hatched chicks was found to contain a cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) which has properties that are very similar to properties of the Ah receptor previously characterized in mammalian tissues. In chick embryo liver, cytosolic binding sites for TCDD were of high affinity (Kd for [3-H]-TCDD = 0.2 nM) and were specific for 3-methylcholanthrene–type inducers. The specific binding component sedimented at about 9S on sucrose density gradients prepared at low ionic strength. A high level of Ah receptor was detected in chick embryo liver by the fifth day of incubation (5 DI); this is at least 24 hours prior to the onset of AHH inducibility. The Ah receptor concentration increased from 5 DI to 8 DI, the period when chick liver is undergoing early morphological differentiation. After 8 DI, Ah receptor levels dropped substantially and remained low into the posthatching period. In contrast, AHH inducibility was high by 7 DI and remained high throughout embryonic development and into the posthatching period. The discrepancy between Ah receptor levels and the degree of AHH inducibility suggests that only a small fraction of the Ah receptor population is required for maximal AHH induction.  相似文献   

6.
The activities and regulatory patterns of arginase and ornithine aminotransferase (OAT) of the liver (a mitotic tissue) and kidney cortex (a post-mitotic tissue) of immature, adult, and senescent male rats were studied. The activities of the liver enzymes were highest in the immature rat and decreased gradually with age. However, in the kidney cortex, the activity of arginase was highest and decreased significantly thereafter while that of OAT shows no significant change throughout the life span of the rat. Further, the activity of kidney cortex arginase was approximately 1/20th of that of the liver enzyme. Adrenalectomy and hydrocortisone treatments altered the activity of arginase in both tissues and that of OAT in the liver only. However, the kidney cortex OAT was not responsive towards these treatments. Actinomycin D inhibited the hydrocortisone-mediated induction of arginase of both the liver and kidney cortex and that of the liver OAT.  相似文献   

7.
A full-length cDNA clone, pKK-DTD4, complementary to rat liver cytosolic DT-diaphorase [NAD(P)H:quinone oxidoreductase (EC 1.6.99.2)] mRNA was expressed in Escherichia coli. The pKK-DTD4 cDNA was obtained by extending the 5'-end sequence of a rat liver DT-diaphorase cDNA clone, pDTD55, to include an ATG initiation codon and the NH2-terminal codons using polymerase chain reaction (PCR). Restriction sites for EcoRI and HindIII were incorporated at the 5'- and 3'-ends of the cDNA, respectively, by the PCR reaction. The resulting full-length cDNA was inserted into an expression vector, pKK2.7, at the EcoRI and HindIII restriction sites. E. coli strain AB1899 was transformed with the constructed expression plasmid, and DT-diaphorase was expressed under the control of the tac promotor. The expressed DT-diaphorase exhibited high activity of menadione reduction and was inhibited by dicumarol at a concentration of 10(-5)M. After purification by Cibacron Blue affinity chromatography, the expressed enzyme migrated as a single band on 12.5% sodium dodecyl sulfate-polyacrylamide gel with a molecular weight equivalent to that of the purified rat liver cytosolic DT-diaphorase. The purified expressed protein was recognized by polyclonal antibodies against rat liver DT-diaphorase on immunoblot analysis. It utilized either NADPH or NADH as electron donor at equal efficiency and displayed high activities in reduction of menadione, 1,4-benzoquinone, and 2,6-dichlorophenolindophenol which are typical substrates for DT-diaphorase. The expressed DT-diaphorase exhibited a typical flavoprotein spectrum with absorption peaks at 380 and 452 nm. Flavin content determination showed that it contained 2 mol of FAD per mole of the enzyme. Edman protein sequencing of the first 20 amino acid residues at the NH2 terminus of the expressed protein indicated that the expressed DT-diaphorase is not blocked at the NH2 terminus and has an alanine as the first amino acid. The remaining 19 amino acid residues at the NH2 terminus were identical with those of the DT-diaphorase purified from rat liver cytosol.  相似文献   

8.
  • 1.1. 3,3′,4,4′-Tetrachlorobiphenyl (TCB) was 20–100 times more toxic in chick embryos than in turkey embryos when injected into eggs.
  • 2.2. The ed50-value for induction of AHH activity by TCB in the liver of early chick and turkey embryos was estimated to be 0.6 and 6 μg/kg egg, respectively.
  • 3.3. In both species α-naphthoflavone was more effective than metyrapone at inhibiting basal and TCB-induced AHH activities.
  • 4.4. The TCDD receptor was detected in the liver of 7-day-old chick embryos, while it was not found in 9-day-old turkey embryo liver.
  相似文献   

9.
Homogenates of liver, lung, kidney, stomach, small intestine and colon from 8 strains of mice were compared for their ability to metabolize benzo[a]pyrene (BP) and dimethylnitrosamine (DMN) to mutagens. Females of strains CF1, AKR/J, AU/SsJ, DBA/2J, SWR/J, A/J, C3H/HeJ, and C57BL/6J were either untreated or received phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyls (AR) to induce drug-metabolizing enzymes. The effects of these drugs on organ weight and on the amounts of DNA, S-10 protein, and microsomal protein per unit weight of tissue are reported. Salmonella typhimurium TA92 and TA98 were used as indicators of the formation of mutagens. For each organ there was an optimal balance between amount of tissue homogenate and concentration of test compound for maximal yield of revertants. A sensitive radiometric assay of DMN demethylase (DMND) is described which permits measurement of the enzyme in liver, lung and kidney. DMN at 1 mM is used as substrate. Aryl hydrocarbon hydroxylase (AHH) was measured in all tissue using BP as substrate. AR and MC are very good inducers of AHH activity in livers of mice classified as aromatic hydrocarbon responsive, but not in those classified as hydrocarbon nonresponsive. Responsiveness is strain-specific and genetically regulated. Metabolism of BP to mutagens by liver homogenates was correlated with extent of AHH induction. This dimorphism of response of AHH to inducers was present, but less pronounced, in non-hepatic tissues. Basal activities of AHH and DMND were correlated in livers and lungs from untreated mice. DMND activities were increased less than 2-fold by PB, MC or AR treatments. Metabolism of DMN to mutagens was not closely correlated with DMND activities. Strain of mouse, type of tissue and test substance are important variables in assessing the potential effect of microsomal enzyme-inducing agents on the metabolism of mutagenic substances.  相似文献   

10.
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.  相似文献   

11.
An attempt was made to detect the serum factors inhibiting the G1-S transition in synchronized, baby rat hepatocytes. In untreated adult rat serum, this inhibitory activity was always linked to high molecular weight (HMW) compounds. Incubation of serum with trypsin or chymotrypsin resulted in the formation of a low molecular weight (LMW) G1-S inhibitory factor. the same result was obtained with fractions from adult rat liver but not with kidney or spleen fractions. Separation of the LMW factor by ultrafiltration increased its specific activity by about 103. the active period in the cell cycle of both the LMW and HMW factors was the same: the late G1 phase. However, the activity of the LMW factor was not blocked by the Kunitz factor. an enzymatic transformation of the HMW factor might be induced by liver cell membrane-bound proteases and constitute a mechanism regulating hepatocyte proliferation.  相似文献   

12.
Indole-3-carbinol (I3C) is a dietary modulator of carcinogenesis that can reduce the level of carcinogen binding to DNA. I3C-derived products are potent inducers of certain cytochrome P-450(CYP)-dependent enzyme activities. To investigate whether the protective effects of I3C against carcinogen damage to DNA are associated with increased activities of CYP1A1 enzymes, we examined the relationship of I3C-mediated organ-specific CYP enzyme induction with total levels of benzo[a]pyrene (BP) binding to hepatic and pulmonary DNA of rats. Oral intubation (PO) of I3C (500 mumol/kg body wt.) in 10% DMSO in corn oil produced after 20 h, increases in ethoxyresorufin O-deethylase (EROD) activities (associated with CYP1A1 isozyme) of 700-fold, 245-fold and 36-fold in small intestine, lungs and liver, respectively, compared with activities in untreated controls. Hepatic aryl hydrocarbon hydroxylase (AHH) activity was increased 4-fold under these conditions. Pentoxyresorufin O-depentylase (PROD) activity (associated with CYP2B isoenzyme) was increased 6-fold in the liver but was unaffected in lung and small intestine. Intraperitoneal injection (IP) of I3C (500 mumol/kg body wt.) produced no significant change in EROD or PROD activities in lung, liver, or small intestine. PO administration of the acid reaction mixture (RXM) of I3C increased hepatic AHH activity (5-fold) and EROD activities in small intestine (650-fold), lung (100-fold) and liver (18-fold). IP administration of RXM (equivalent to 500 mumol I3C/kg body wt.) significantly increased only EROD activity in lung and liver, but did not affect EROD activity in small intestine, AHH activity in liver, or PROD activity in any of the organs examined. Twenty hours after inducer treatment, half of the rats were treated PO with 0.2 mumol [3H]BP in corn oil. Analysis of tissues 5 h after BP administration indicated that compared with untreated controls, administration of I3C and RXM by either route reduced by 30-50% the level of BP binding to hepatic DNA, an effect that was not correlated to CYP1A1 enzyme induction in any of the organs examined. However, PO administration of I3C and RXM produced a 50-70% decrease in carcinogen binding to pulmonary DNA, while IP administration of inducers had no effect on DNA binding in this organ. These results with the lung are consistent with an increased presystemic clearance of BP in the intestine and are discussed in terms of the role of induction of intestinal CYP1A1 activity in the decreased lymphatic and venous transport of unmetabolized BP to the lung.  相似文献   

13.
The activity of aryl hydrocarbon hydroxylase (AHH) and/or epoxide hydratase (EH) is induced in primary fetal rat liver cell culture by benz-[alpha]anthracene (BA), phenobarbital (PB), cigarette smoke condensate (CSC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and trans-stilbene oxide (TSO). The response of the two enzymes to the different chemicals varies as follows: (a) AHH is induced by lower concentrations of BA, PB and CSC than those required to significantly induce EH; (b) AHH is selectively induced by TCDD and by low BA concentrations; (c) the kinetics of AHH induction by BA, PB and CSC is faster than that of EH; (d) TSO is a selective inducer of EH. As described earlier for AHH, RNA and protein synthesis and the continuous presence of the inducer are required in the early phases of EH induction. Later when the EH activity has reached a plateau, intact RNA and protein synthesis is not necessary to maintain the enzyme at its optimal value. The removal of the inducer determines a decay of the EH activity, allowing the estimation of a biological tau 1/2 of about 72 h. TSO prevents the AHH induction by PB, but not that mediated by BA and CSC. Added together with PB, BA, CSC or PB plus BA, TSO induces the EH activity in a more than additive manner. This effect is only seen after 6 days of continuous treatment. These results indicate that in this tissue culture model, the mechanism of AHH and EH induction can clearly be dissociated.  相似文献   

14.
When mice from different inbred strains are injected intraperitoneally with 3-methylcholanthrene (MC), the activity of aryl hydrocarbon hydroxylase (AHH) rapidly increases in livers of some strains but not others. AHH plays a role in the metabolism of polycyclic hydrocarbons. Alleles at a small number of loci account for most of the variation in inducibility of hepatic AHH among mice, when MC is used as the inducing agent. Cigarette smoke is a common source of carcinogenic polycyclic hydrocarbons in the environment. Since some of the hydrocarbons in cigarette smoke are metabolized by AHH, the activity of AHH in tissues may affect the carcinogenicity of smoke in those tissues. The purpose of these experiments was to see whether induction of AHH in lung in response to cigarette smoke is regulated by the same genes that regulate induction of AHH in liver in response to MC. Mouse strains AKR/J and C57L/J and six recombinant inbred (RI) lines derived from them were tested for the response of AHH in lung and liver to parenteral MC or inhalation of cigarette smoke. Inducibility (the ratio of MC-induced AHH activities to basal AHH activities) in liver from MC-treated RI lines is bimodal and compatible with Mendelian segregation of genes at a small number of loci. Increased activities of AHH in MC-treated liver are associated with increased ability to metabolize BP and whole smoke condensates to mutagens detected by Salmonella typhimurium TA1538. Inducibility of AHH in lung in response to MC is not bimodal, and no definite conclusion about the number of loci can be made. When actual levels of AHH activity are considered, following the administration of MC as inducing agent, there is a correlation (r=0.89, p<0.01) between AHH levels in liver and lung, suggesting that some genes affecting liver also affect lung. Basal and MC-induced AHH levels in lung are also correlated (r=0.86, p<0.01). Mice with high basal activities have two to threefold higher levels of AHH after MC treatment than do mice with low basal activities. Induction of AHH in pulmonary tissues occurs in all mice after either parenteral MC or smoke inhalation. In contrast to MC treatment, AHH activities in lungs following smoke inhalation are not correlated with AHH levels in liver after MC (r=0.49) and are only weakly correlated with basal (r=0.66, 0.05相似文献   

15.
Hexachlorobenzene (HCB) produced increases in ethoxyresorufin (ERR) O-deethylase, aryl hydrocarbon hydroxylase (AHH) and aminopyrine N-demethylase activities in rat liver microsomes which were intermediate between those produced by phenobarbital and 3,4-benzpyrene (BP). α-Naphthoflavone (ANF) selectively inhibited ERR activity in BP and HCB-induced microsomes (94% and 88%). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of liver microsomes indicated that HCB did not produce a detectable increase in a polypeptide with electrophoretic properties similar to those of purified cytochrome P-448 (Mr = 56 000). However, HCB did induce a polypeptide with Mr = 53 000 corresponding to one of two polypeptide bands induced by BP. This polypeptide may represent a second form of cytochrome P-448. Purification of HCB to remove possible dibenzo-p-dioxin impurities did not alter the ‘mixed-type’ induction produced by HCB. In contrast to HCB, all other chlorinated benzenes tested resembled phenobarbital as inducers.  相似文献   

16.
The localization of fructose 1,6-bisphosphatase (D-Fru-1,6-P2-1-phosphohydrolase, EC 3.1.3.11) in rat kidney and liver was determined immunohistochemically using a polyclonal antibody raised against the enzyme purified from pig kidney. The immunohistochemical analysis revealed that the bisphosphatase was preferentially localized in hepatocytes of the periportal region of the liver and was absent from the perivenous region. Fructose-1,6-bisphosphatase was also preferentially localized in the cortex of the kidney proximal tubules and was absent in the glomeruli, loops of Henle, collecting and distal tubules, and in the renal medulla. As indicated by immunocytochemistry using light microscopy and confirmed with the use of reflection confocal microscopy, the enzyme was preferentially localized in a perinuclear position in the liver and the renal cells. Subcellular fractionation studies followed by enzyme activity assays revealed that a majority of the cellular fructose-1,6-bisphosphatase activity was associated to subcellular particulate structures. Overall, the data support the concept of metabolic zonation in liver as well as in kidney, and establish the concept that the Fructose-1,6-bisphosphatase is a particulate enzyme that can not be considered a soluble enzyme in the classical sense. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Normal rat kidney (NRK) cells growth arrested by picolinic acid and isoleucine deprivation exhibit an increased response to certain agents (i.e., prostaglandin E1, (?)-isoproterenol, and cholera toxin) which elevate intracellular cyclic AMP levels. The enhanced hormonal response is apparently due, at least in part, to increased adenylate cyclase activity. Adenylate cyclase activities measured in the presence of GTP, GTP plus prostaglandin E1, and GTP plus (?)-isoproterenol are increased two- to threefold in membranes prepared from treated cells. In contrast, basal activity is potentiated only 20 to 50% and activity determined in the presence of fluoride is only marginally altered. Also of interest is the increase in cholera toxin activation of cyclase activity in the treated cells. Lower concentrations of cholera toxin (5 ng/ml) are required to achieve maximal stimulation of cyclase activity from picolinic acid-treated and isoleucine-deprived cells; maximal stimulation of control cell adenylate cyclase is attained with 25 to 50 ng/ml cholera toxin. Picolinic acid treatment and isoleucine deficiency both have been shown to arrest NRK cell growth in the G1 phase of the cell cycle. However, results with cells arrested in G1 by serum starvation and by growth to high cell population density indicate that G1 specific growth arrest does not appear to account for the increase in hormonal responsiveness. Chelation of inhibitory metals and proteolytic activation also do not appear to be involved in the mechanism by which picolinic acid enhances cyclic AMP formation. Rather, the results suggest that the treated cells have an increased amount of an active GTP-dependent function required for hormone and cholera toxin stimulation of adenylate cyclase. Thus, picolinic acid treatment and isoleucine deprivation may provide a useful means of modulating the GTP-dependent step required to potentiate hormonal responsiveness.  相似文献   

18.
Seventeen-day-old chick embryos were used as a test system to assess the effect of vitamin K1(K1) on benzo(a)pyrene (BP) metabolism as measured by the induction of arylhydrocarbon hydroxylase (AHH) and cytochrome P-450 and the levels of glutathione (GSH) and glutathione S-transferase (GST) in liver. Twenty-four hours after injection of BP into the air sac there was a sharp rise in AHH and P-450 and a drop in GSH. When K1 was injected 24 hr prior to BP there was a decrease in GST activity as compared with the control plus an augmented increase in AHH induction. This augmentation in BP metabolism (Phase I) together with a concomitant decrease in at least one mechanism of Phase II conjugation is in keeping with other evidence that K1 can play an adjuvant role in BP induced mutagenicity and carcinogenicity. Ubiquinone has a much lesser effect on BP metabolism than does K1 in equimolar concentration.  相似文献   

19.
Blood flow and its distribution may influence the functioning of drug metabolizing enzymes in vivo, and also determine the degree to which various organs participate in the metabolic clearance of agents from the body. 'Physiological' pharmacokinetic modeling suggests that in some situations the lung, because of its greater blood flow, may have a significant role in metabolic drug clearance in vivo, despite its low content of drug-metabolizing enzymes relative to the liver. For example, rat liver has much greater microsomal benzo[a]pyrene (BP) hydroxylase (AHH) activity than lung, both in control rats and in rats pretreated with the enzyme inducer, 3-methylcholanthrene (3MC). However, studies using AHH enzyme kinetics, as well as studies in isolated perfused organs and in vivo, indicate that the lungs' contribution to total body metabolic clearance of BP is substantial despite the lungs' relatively low AHH activity compared to liver. Studies with 5-hydroxytryptamine similarly indicate that the lung is important in the metabolic disposition of this amine. These results emphasize that the role of an organ in metabolic drug disposition in vivo cannot be predicted directly from enzyme activity in that organ. By accounting for both biochemical and physiological influences, useful predictions regarding drug disposition may be made for normal and diseased individuals.  相似文献   

20.
α-Methyl-d-glucoside has been shown to be a non-metabolizable sugar which is accumulated against a concentration gradient by a Na+-dependent and phlorizin inhibited process by adult rat renal cortical slices incubatedin vitro at 37 °C. (2) The velocity of accumulation increased linearly with substrate concentrations up to 1.5 mM, but at higher concentrations obeyed saturable kinetics with an apparentKm of about 6 mM. (3) Uptake was enhanced as Na+ was increased from 0 to 100 mequiv/l. Higher Na+ concentrations caused no further effect. (4) A pH maximum of transport occurred between 7.35 and 8.0. (5) Glucoside uptake was inhibited byd-glucose,d-galactose,d-fructose,d-mannose andd-ribose. The inhibition byd-glucose andd-galactose was competitive with apparentKt of 24 and 53 mM, respectively. (6) Bothd-glucose andd-galactose accelerated the efflux of α-methyl-d-glucoside from preloaded cells. (7) Kidney cortex slices from 1-day-old rats were unable to accumulate α-methyl-d-glucoside to form a concentration gradient. The ability to concentrate the glucoside increased progressively after birth, reaching near normal in tissue from 15-day-old animals. The data indicate that the transport process in the newborn is rudimentary, failing also to display accelerated efflux phenomenon. (8) α-Methyl-d-glucoside is transported in rat kidney cortex by a mechanism similar in many ways to that ofd-galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号