首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that myosin light chain phosphorylation inhibits fiber shortening velocity at high temperatures, 30 degrees C, in the presence of the phosphate analog vanadate. Vanadate inhibits tension by reversing the transition to force-generating states, thus mimicking a prepower stroke state. We have previously shown that at low temperatures vanadate also inhibits velocity, but at high temperatures it does not, with an abrupt transition in inhibition occurring near 25 degrees C (E. Pate, G. Wilson, M. Bhimani, and R. Cooke. Biophys J 66: 1554-1562, 1994). Here we show that for fibers activated in the presence of 0.5 mM vanadate, at 30 degrees C, shortening velocity is not inhibited in dephosphorylated fibers but is inhibited by 37 +/- 10% in fibers with phosphorylated myosin light chains. There is no effect of phosphorylation on fiber velocity in the presence of vanadate at 10 degrees C. The K(m) for ATP, defined by the maximum velocity of fibers partially inhibited by vanadate at 30 degrees C, is 20 +/- 4 microM for phosphorylated fibers and 192 +/- 40 microM for dephosphorylated fibers, showing that phosphorylation also affects the binding of ATP. Fiber stiffness is not affected by phosphorylation. Inhibition of velocity by phosphorylation at 30 degrees C depends on the phosphate analog, with approximately 12% inhibition in fibers activated in the presence of 5 mM BeF(3) and no inhibition in the presence of 0.25 mM AlF(4). Our results show that myosin phosphorylation can inhibit shortening velocity in fibers with large populations of myosin heads trapped in prepower stroke states, such as occurs during muscle fatigue.  相似文献   

2.
We measured isotonic sliding distance of single skinned fibers from rabbit psoas muscle when known and limited amounts of ATP were made available to the contractile apparatus. The fibers were immersed in paraffin oil at 20 degrees C, and laser pulse photolysis of caged ATP within the fiber initiated the contraction. The amount of ATP released was measured by photolyzing 3H-ATP within fibers, separating the reaction products by high-pressure liquid chromatography, and then counting the effluent peaks by liquid scintillation. The fiber stiffness was monitored to estimate the proportion of thick and thin filament sites interacting during filament sliding. The interaction distance, Di, defined as the sliding distance while a myosin head interacts with actin in the thin filament per ATP molecule hydrolyzed, was estimated from the shortening distance, the number of ATP molecules hydrolyzed by the myosin heads, and the stiffness. Di increased from 11 to 60 nm as the isotonic tension was reduced from 80% to 6% of the isometric tension. Velocity and Di increased with the concentration of ATP available. As isotonic load was increased, the interaction distance decreased linearly with decrease of the shortening velocity and extrapolated to 8 nm at zero velocity. Extrapolation of the relationship between Di and velocity to saturating ATP concentration suggests that Di reaches 100-190 nm at high shortening velocity. The interaction distance corresponds to the sliding distance while cross-bridges are producing positive (working) force plus the distance while they are dragging (producing negative forces). The results indicate that the working and drag distances increase as the velocity increases. Because Di is larger than the size of either the myosin head or the actin monomer, the results suggest that for each ATPase cycle, a myosin head interacts mechanically with several actin monomers either while working or while producing drag.  相似文献   

3.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   

4.
Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

6.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

7.
The dependence of the isometric tension, the velocity of unloaded shortening, and the steady-state rate of MgATP hydrolysis on the MgATP concentration (range 0.01-5 mM MgATP) was studied in Ca-activated skinned Limulus muscle fibers. With increasing MgATP concentration the isometric tension increased to a peak at approximately 0.1 mM, and slightly decreased in the range up to 5 mM MgATP. The velocity of unloaded shortening depended on the MgATP concentration roughly according to the Michaelis-Menten law of saturation kinetics with a Michaelis-Menten constant Kv = 95 microM and a maximum shortening velocity of 0.07 muscle lengths s-1; the detachment rate of the cross-bridges during unloaded shortening was 24 s-1. The rate of MgATP splitting also depended hyperbolically on the MgATP concentration with a Michaelis-Menten constant Ka = 129 microM and a maximum turnover frequency of 0.5-1 s-1. The results are discussed in terms of a cross-bridge model based on a biochemical scheme of ATP hydrolysis by actin and myosin in solution.  相似文献   

8.
Maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and ATP consumption rate during maximum isometric activation (ATP(iso)) were determined in human vastus lateralis (VL) muscle fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that the reserve capacity for ATP consumption [1 -- (ratio of ATP(iso) to V(max) ATPase)] varies across VL muscle fibers expressing different MHC isoforms. Biopsies were obtained from 12 subjects (10 men and 2 women; age 21--66 yr). A quantitative histochemical procedure was used to measure V(max) ATPase. In permeabilized fibers, ATP(iso) was measured using an NADH-linked fluorometric procedure. The reserve capacity for ATP consumption was lower for fibers coexpressing MHC(2X) and MHC(2A) compared with fibers singularly expressing MHC(2A) and MHC(slow) (39 vs. 52 and 56%, respectively). Tension cost (ratio of ATP(iso) to generated force) also varied with fiber type, being highest in fibers coexpressing MHC(2X) and MHC(2A). We conclude that fiber-type differences in the reserve capacity for ATP consumption and tension cost reflect functional differences such as susceptibility to fatigue.  相似文献   

9.
Masticatory myosin heavy chain (M MyHC) is a myosin subunit isoform with expression restricted to muscles derived from the first branchial arch, such as jaw-closer muscles, with pronounced interspecies variability. Only sparse information is available on the contractile properties of muscle fibers expressing M MyHC (M fibers). In this study, we characterized M fibers isolated from the jaw-closer muscles (temporalis and masseter) of two species of domestic carnivores, the cat and the dog, compared with fibers expressing slow or fast (2A, 2X, and 2B) isoforms. In each fiber, during maximally calcium-activated contractions at 12 degrees C, we determined isometric-specific tension (P(o)), unloaded shortening velocity (v(o)) with the slack test protocol, and the rate constant of tension redevelopment (K(TR)) after a fast shortening-relengthening cycle. At the end of the mechanical experiment, we identified MyHC isoform composition of each fiber with gel electrophoresis. Electrophoretic migration rate of M MyHC was similar in both species. We found that in both species the kinetic parameters v(o) and K(TR) of M fibers were similar to those of 2A fibers, whereas P(o) values were significantly greater than in any other fiber types. The similarity between 2A and M fibers and the greater tension development of M fibers were confirmed also in mechanical experiments performed at 24 degrees C. Myosin concentration was determined in single fibers and found not different in M fibers compared with slow and fast fibers, suggesting that the higher tension developed by M fibers does not find an explanation in a greater number of force generators. The specific mechanical characteristics of M fibers might be attributed to a diversity in cross-bridge kinetics.  相似文献   

10.
MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the ATPase of shortening myofibrils at 4 degrees C by the rapid flow quench method. The progress curve has three phases: a P(i) burst, a fast linear phase kF of duration tB, and a deceleration to a slow kS. We propose that kF is the ATPase of myofibrils shortening under zero external load; at tB shortening and ATPase rates are reduced by passive resistance. The total ATP consumed during the rapid shortening is ATPc. Our purpose was to obtain information on the myofibrillar shortening velocity from their ATPase progress curves. We tested tB as an indicator of shortening velocity by determining the effects of different probes upon it and the other ATPase parameters. The dependence of tB upon the initial sarcomere length was linear, giving a shortening velocity close to that of muscle fibres (Vo). The Km of ATP was larger for tB than for kF, as found with fibers for Vo and their ATPase. ADP and 2,3-butanedione monoxime, but not P(i), inhibited tB to the same extent as Vo. The delta H for tB and Vo were similar. ATPc was independent of the sarcomere length, implying that the more the myofibrils shorten, the less ATP expended per myosin head per micron shortened. We propose that tB can be used as an indicator for myofibrillar shortening velocities.  相似文献   

12.
Denervation (DNV) of rat diaphragm muscle (DIAm) decreases myosin heavy chain (MHC) content in fibers expressing MHC(2X) isoform but not in fibers expressing MHC(slow) and MHC(2A). Since MHC is the site of ATP hydrolysis during muscle contraction, we hypothesized that ATP consumption rate during maximum isometric activation (ATP(iso)) is reduced following unilateral DIAm DNV and that this effect is most pronounced in fibers expressing MHC(2X). In single-type-identified, permeabilized DIAm fibers, ATP(iso) was measured using NADH-linked fluorometry. The maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) was determined using quantitative histochemistry. The effect of DNV on maximum unloaded shortening velocity (V(o)) and cross-bridge cycling rate [estimated from the rate constant for force redevelopment (k(TR)) following quick release and restretch] was also examined. Two weeks after DNV, ATP(iso) was significantly reduced in fibers expressing MHC(2X), but unaffected in fibers expressing MHC(slow) and MHC(2A). This effect of DNV on fibers expressing MHC(2X) persisted even after normalization for DNV-induced reduction in MHC content. With DNV, V(o) and k(TR) were slowed in fibers expressing MHC(2X), consistent with the effect on ATP(iso). The difference between V(max) ATPase and ATP(iso) reflects reserve capacity for ATP consumption, which was reduced across all fibers following DNV; however, this effect was most pronounced in fibers expressing MHC(2X). DNV-induced reductions in ATP(iso) and V(max) ATPase of fibers expressing MHC(2X) reflect the underlying decrease in MHC content, while reduction in ATP(iso) also reflects a slowing of cross-bridge cycling rate.  相似文献   

13.
M Regnier  D M Lee    E Homsher 《Biophysical journal》1998,74(6):3044-3058
The mechanical behavior of skinned rabbit psoas muscle fiber contractions and in vitro motility of F-actin (Vf) have been examined using ATP, CTP, UTP, or their 2-deoxy forms (collectively designated as nucleotide triphosphates or NTPs) as contractile substrates. Measurements of actin-activated heavy meromyosin (HMM) NTPase, the rates of NTP binding to myosin and actomyosin, NTP-mediated acto-HMM dissociation, and NTP hydrolysis by acto-HMM were made for comparison to the mechanical results. The data suggest a very similar mechanism of acto-HMM NTP hydrolysis. Whereas all NTPs studied support force production and stiffness that vary by a factor 2 or less, the unloaded shortening velocity (Vu) of muscle fibers varies by almost 10-fold. 2-Deoxy ATP (dATP) was unique in that Vu was 30% greater than with ATP. Parallel behavior was observed between Vf and the steady-state maximum actin-activated HMM ATPase rate. Further comparisons suggest that the variation in force correlates with the rate and equilibrium constant for NTP cleavage; the variations in Vu or Vf are related to the rate of cross-bridge dissociation caused by NTP binding or to the rate(s) of product release.  相似文献   

14.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

15.
The isometric tension of single fibers isolated from glycerinated rabbit psoas muscle was measured at various temperatures using Mg-ITP as a substrate. The tension developed in Mg-ITP decreased linearly as the temperature was reduced from 24 degrees C to 4 degrees C. Myosin formed the myosin--product complex predominantly via ATP hydrolysis at the burst site during Mg-ATP hydrolysis, irrespective of temperature, and the tension developed in Mg-ATP decreased linearly as the temperature decreased (Yoshida and Tawada (1976) J. Biochem. 80, 861). During Mg-ITP hydrolysis, myosin forms the myosin*-product complex predominantly at the burst site above 20 degrees C, while myosin forms the myosin*-substrate complex below 8 degrees C (Hozumi (1976) Eur. J. Biochem. 63, 241). However, the temperature dependence of tension development in Mg-ITP is linear, as with Mg-ATP, as mentioned above. This temperature dependence is not compatible with some muscle models which assume the formation of the myosin*-product complex by cross-bridges prior to combination with actin during contraction.  相似文献   

16.
In rat skeletal muscle the unloaded shortening velocity (Vo) is defined by the myosin isoform expressed in the muscle fibre. In 2001 we suggested that ADP release from actomyosin in solution (controlled by k(-AD)) was of the right size to limit Vo. However, to compare mechanical and solution kinetic data required a series of corrections to compensate for the differences in experimental conditions (0.5 M KCl, 22 degrees C for kinetic assays of myosin, 200 mM ionic strength, 12 degrees C to measure Vo). Here, a method was developed to prepare heavy meromyosin (HMM) from pure myosin isoforms isolated from single muscle fibres and to study k(-AD) (determined from the affinity of the acto-myosin complex for ADP, KAD) and the rate of ATP-induced acto-HMM dissociation (controlled by K1k+2) under the same experimental condition used to measure Vo). In fast-muscle myosin isolated from a wide range of mammalian muscles, k(-AD) was found to be too fast to limit Vo, whereas K1k+2 was of the right magnitude for ATP-induced dissociation of the cross-bridge to limit shortening velocity. The result was unexpected and prompted further experiments using the stopped-flow approach on myosin subfragment-1 (S1) and HMM obtained from bulk preparations of rabbit and rat muscle. These confirmed that the rate of cross-bridge dissociation by ATP limits the velocity of contraction for fast myosin II isoforms at 12 degrees C, while k(-AD) limits the velocity of slow myosin II isoforms. Extrapolating our data to 37 degrees C suggests that at physiological temperature the rate of ADP dissociation may limit Vo for both isoforms.  相似文献   

17.
Tension responses to ramp stretches of 1-3% Lo (fiber length) in amplitude were examined in resting muscle fibers of the rat at temperatures ranging from 10 degrees C to 36 degrees C. Experiments were done using bundles of approximately 10 intact fibers isolated from the extensor digitorum longus (a fast muscle) and the soleus (a slow muscle). At low temperatures (below approximately 20 degrees C), the tension response consisted of an initial rise to a peak during the ramp followed by a complex tension decay to a plateau level; the tension decay occurred at approximately constant sarcomere length. The tension decay after a standard stretch at approximately 3-4.Lo/s contained a fast, an intermediate, and a (small amplitude) slow component, which at 10 degrees C (sarcomere length approximately 2.5 microns) were approximately 2000.s-1, approximately 150.s-1, and approximately 25.s-1 for fast fibers and approximately 2000.s-1, approximately 70.s-1 and approximately 8.s-1 for slow fibers, respectively. The fast component may represent the decay of interfilamentary viscous resistance, and the intermediate component may be due to viscoelasticity in the gap (titin, connectin) filament. The two- to threefold fast-slow muscle difference in the rate of passive tension relaxation (in the intermediate and the slow components) compares with previously reported differences in the speed of their active contractions; this suggests that "passive viscoelasticity" is appropriately matched to contraction speed in different muscle fiber types. At approximately 35 degrees C, the fast and intermediate components of tension relaxation were followed by a delayed tension rise at approximately 10.s-1 (fast fibers) and 2.5.s-1 (slow fibers); the delayed tension rise was accompanied by sarcomere shortening. BDM (5-10 mM) reduced the active twitch and tetanic tension responses and the delayed tension rise at 35 degrees C; the results indicate stretch sensitive activation in mammalian sarcomeres at physiological temperatures.  相似文献   

18.
This study examines the myosin isozyme heterogeneity (in terms of both alkali light chains and myosin heavy chains) among skeletal muscle fibers of the rabbit and correlates these isozyme differences with the differences in a contractile property, the velocity of unloaded shortening, of the fibers. The mean velocities of unloaded shortening (pCa 4.3; 12 degrees C) were as follows: psoas IIb fibers, 2.07 fiber lengths/s (n = 25); tibialis anterior (IIb) fibers, 1.63 fiber lengths/s (n = 18); vastus intermedius IIa fibers, 0.98 fiber lengths/s (n = 15); fibers (IIa) from chronically stimulated tibialis anterior, 0.86 fiber lengths/s (n = 16). Peptide maps of the myosins showed that the myosin heavy chains of the two groups of IIb fibers were indistinguishable from each other, but different from the heavy chains of the IIa fibers. However, the difference in maximal shortening velocity of the two groups of IIb fibers was correlated with a difference in the alkali light chain ratio deduced from the intensity ratio of myosin isoforms separated by gel electrophoresis under nondenaturing conditions. The vastus intermedius (IIa) and chronically stimulated tibialis anterior (IIa) fibers were indistinguishable in terms of either velocities of unloaded shortening or myosin isozyme contents. Soleus fibers contained only slow-twitch myosin. Thus, among fibers that contained a variety of myosin isozymes, differences in shortening velocities were correlated with the alkali light chain ratio, myosin heavy chain type, or a combination of both.  相似文献   

19.
K Kagawa  K Horiuti    K Yamada 《Biophysical journal》1995,69(6):2590-2600
Using flash photolysis of caged ATP in skinned muscle fibers from rat psoas, we examined the inhibitory effects of 2,3-butanedione monoxime (BDM) on the contraction kinetics and the rate of ATP hydrolysis of the cross-bridges at approximately 10 degrees C. The hydrolysis rate was estimated from the stiffness records. The effects of BDM were compared with those of orthophosphate (P(i)) and of reduction in [Ca2+] (low Ca2+), and it was found that i) BDM and low Ca2+ inhibited ATPase activity to the same extent as they inhibited the steady tension, whereas P(i) inhibited ATPase activity much less than tension; ii) BDM and P(i) decreased tension per stiffness during the steady contraction more than did low Ca2+; iii) neither BDM nor low Ca2+ affected the initial relaxation of the fiber on release of ATP, but P(i) slightly slowed it; and iv) BDM hardly influenced the rate of contraction development after relaxation, although P(i) and low Ca2+ accelerated it. We concluded that BDM inhibits the Ca(2+)-regulated attachment of the cross-bridges and force-generation of the attached cross-bridges.  相似文献   

20.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号