首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.  相似文献   

2.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

3.
Benzene-free synthesis of adipic acid   总被引:1,自引:0,他引:1  
Strains of Escherichia coli were constructed and evaluated that synthesized cis,cis-muconic acid from D-glucose under fed-batch fermentor conditions. Chemical hydrogenation of the cis,cis-muconic acid in the resulting fermentation broth has also been examined. Biocatalytic synthesis of adipic acid from glucose eliminates two environmental concerns characteristic of industrial adipic acid manufacture: use of carcinogenic benzene and benzene-derived chemicals as feedstocks and generation of nitrous oxide as a byproduct of a nitric acid catalyzed oxidation. While alternative catalytic syntheses that eliminate the use of nitric acid have been developed, most continue to rely on petroleum-derived benzene as the ultimate feedstock. In this study, E. coli WN1/pWN2.248 was developed that synthesized 36.8 g/L of cis,cis-muconic acid in 22% (mol/mol) yield from glucose after 48 h of culturing under fed-batch fermentor conditions. Optimization of microbial cis,cis-muconic acid synthesis required expression of three enzymes not typically found in E. coli. Two copies of the Klebsiella pneumoniae aroZ gene encoding DHS dehydratase were inserted into the E. coli chromosome, while the K. pneumoniae aroY gene encoding PCA decarboxylase and the Acinetobacter calcoaceticus catA gene encoding catechol 1,2-dioxygenase were expressed from an extrachromosomal plasmid. After fed-batch culturing of WN1/pWN2.248 was complete, the cells were removed from the broth, which was treated with activated charcoal and subsequently filtered to remove soluble protein. Hydrogenation of the resulting solution with 10% Pt on carbon (5% mol/mol) at 3400 kPa of H2 pressure for 2.5 h at ambient temperature afforded a 97% (mol/mol) conversion of cis,cis-muconic acid into adipic acid.  相似文献   

4.
Immobilised 1,3-specific lipase from Rhizopus arrhizus was used as catalyst for the esterification of -glycero-3-phosphate and fatty acid or fatty acid vinyl ester in a solvent-free system. With lauric acid vinyl ester as acyl donor, aw<0.53 favored the synthesis of lysophosphatidic acid (1-acyl-rac-glycero-3-phosphate, LPA1) and the spontaneous acyl migration of the fatty acid on the molecule. Subsequent acylation by the enzyme resulted in high phosphatidic acid (1,2-diacyl-rac-glycero-3-phosphate, PA) formation and high total conversions (>95%). With oleic acid, maximum conversions of 55% were obtained at low water activities. Temperatures below melting point of the product favored precipitation and resulted in high final conversion and high product ratio [LPA/(PA+LPA)]. Thus, LPA was the only product with lauric acid vinyl ester as acyl donor at 25°C. Increased substrate ratio ( -glycero-3-phosphate/fatty acid) from 0.05 to 1 resulted in a higher ratio of LPA to PA formed, but a lower total conversion of -glycero-3-phosphate. Increased amounts of enzyme preparation did not result in higher esterification rates, probably due to high mass-transfer limitations.  相似文献   

5.
Abstract— C6 glial cells in culture were utilized to study the regulation of the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and the synthesis of fatty acids and sterols. Regulation of these phenomena by lipid was demonstrated by the following observations. First, removal of serum from the culture medium was accompanied over the next five days by 2–3-fold increases in the lipogenic enzymatic activities and in 5–15-fold increases in rates of incorporation of acetate into fatty acids and sterols. Second, cells grown in delipidated serum exhibited approx 2-fold higher levels of activity of the lipogenic enzymes and 5–10-fold higher rates of synthesis of fatty acids and sterols than cells grown in normal calf serum. Third, cells grown in serum-free medium supplemented with concentrations of fatty acid comparable to those present in medium supplemented with serum exhibited activities of fatty acid synthetase comparable to those exhibited by cells grown in the serum-supplemented medium. The mechanism of these effects on fatty acid synthetase was shown by immunochemical techniques to involve alterations in content rather than in catalytic efficiency of the enzyme. The changes in content of the synthetase were caused by alterations in enzyme synthesis. In view of morphological and biochemical data suggesting that C6 cells are related to differentiating cells with properties of both astrocytes and oligodendroglia, the present data may indicate that regulation of palmitic acid synthesis by fatty acid or a product thereof occurs in brain during development.  相似文献   

6.
Metabolism of 3 beta-hydroxy-5-cholenoic acid to chenodeoxycholic acid has been found to occur in rabbits and humans, species that cannot 7 alpha-hydroxylate lithocholic acid. This novel pathway for chenodeoxycholic acid synthesis from 3 beta-hydroxy-5-cholenoic acid led to a reinvestigation of the pathway for chenodeoxycholic acid from 3 beta-hydroxy-5-cholenoic acid in the hamster. Simultaneous infusion of equimolar [1,2-3H]lithocholic acid and 3 beta-hydroxy-5-[14C]cholenoic acid indicated that the 14C enrichment of chenodeoxycholic acid was much greater than that of lithocholic acid. Thus, in all these species, a novel 7 alpha-hydroxylation pathway exists that prevents the deleterious biologic effects of 3 beta-hydroxy-5-cholenoic acid.  相似文献   

7.
Bile acid amides and oxazolines were synthesized by a sequence of steps involving the reaction of the free bile acid with formic acid to yield the formyloxy derivative, preparation of the formyloxy acid chloride, condensation of the acid chloride with 2-amino-2-methyl-1-propanol to give the amide and, finally, cyclization of the amide with thionyl chloride to give the oxazoline. The oxazolines were characterized by physical constants, thin layer and gas-liquid chromatography and identified by elemental analysis and gas-liquid chromatography-mass spectrometry. Some of the bile acid oxazoline derivatives alter the activity of bacterial 7-dehydroxylases in vitro, and inhibit the growth of certain anaerobic bacteria in pure culture.  相似文献   

8.
The inhibition of nucleic acid synthesis by mycophenolic acid   总被引:16,自引:0,他引:16       下载免费PDF全文
1. Mycophenolic acid, an antibiotic of some antiquity that more recently has been found to have marked activity against a range of tumours in mice and rats, strongly inhibits DNA synthesis in the L strain of fibroblasts in vitro. 2. The extent of the inhibition of DNA synthesis is markedly increased by preincubation of the cells with mycophenolic acid before the addition of [(14)C]thymidine. 3. The inhibition of DNA synthesis by mycophenolic acid in L cells in vitro is reversed by guanine in a non-competitive manner, but not by hypoxanthine, xanthine or adenine. 4. The reversal of inhibition by guanine can be suppressed by hypoxanthine, 6-mercaptopurine and adenine. 5. Mycophenolic acid does not inhibit the incorporation of [(14)C]thymidine into DNA in suspensions of Landschütz and Yoshida ascites cells in vitro. 6. Mycophenolic acid inhibits the conversion of [(14)C]hypoxanthine into cold-acid-soluble and -insoluble guanine nucleotides in Landschütz and Yoshida ascites cells and also in L cells in vitro. There is some increase in the radioactivity of the adenine fraction in the presence of the antibiotic. 7. Mycophenolic acid inhibits the conversion of [(14)C]hypoxanthine into xanthine and guanine fractions in a cell-free system from Landschütz cells capable of converting hypoxanthine into IMP, XMP and GMP. 8. Preparations of IMP dehydrogenase from Landschütz ascites cells, calf thymus and LS cells are strongly inhibited by mycophenolic acid. The inhibition showed mixed type kinetics with K(i) values of between 3.03x10(-8) and 4.5x10(-8)m. 9. Evidence was also obtained for a partial, possibly indirect, inhibition by mycophenolic acid of an early stage of biosynthesis of purine nucleotides as indicated by a decrease in the accumulation of formylglycine amide ribonucleotide induced by the antibiotic azaserine in suspensions of Landschütz and Yoshida ascites cells and L cells in vitro.  相似文献   

9.
The stereochemistry of the major isomer of 14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid formed from 15-hydroperoxyeicosatetraenoic acid in human leukocytes was determined. The structure (erythro-14(R),15(S]-14,15-dihydroxy-5,8-cis-10,12-trans-eicosatetraenoi c acid) was assigned based on sodium arsenite thin-layer chromatography, NMR spectroscopy, and comparison with material prepared by total synthesis. This compound was found to inhibit leukotriene B4-induced superoxide anion generation in human neutrophils (IC50 = 10(-8)-10(-7) M). Superoxide anion generation induced by either formylmethionyl-leucyl-phenylalanine or arachidonic acid was not affected.  相似文献   

10.
The effect of individual 7 beta-hydroxy bile acids (ursodeoxycholic and ursocholic acid), bile acid analogues of ursodeoxycholic acid, combination of bile acids (taurochenodeoxycholate and taurocholate), and mixtures of bile acids, phospholipids and cholesterol in proportions found in rat bile, on bile acids synthesis was studied in cultured rat hepatocytes. Individual steroids tested included ursodeoxycholate (UDCA), ursocholate (UCA), glycoursodeoxycholate (GUDCA) and tauroursodeoxycholate (TUDCA). Analogues of UDCA (7-methylursodeoxycholate, sarcosylursodeoxycholate and ursooxazoline) and allochenodeoxycholate, a representative of 5 alpha-cholanoic bile acid were also tested in order to determine the specificity of the bile acid biofeedback. Each individual steroid was added to the culture media at concentrations ranging from 10 to 200 microM. Mixtures of taurochenodeoxycholate (TDCA) and taurocholate in concentrations ranging from 150 to 600 microM alone and in combination with phosphatidylcholine (10-125 microM) and cholesterol (3-13 microM) were also tested for their effects on bile acid synthesis. Rates of bile acid synthesis were determined as the conversion of added lipoprotein [4-14C]cholesterol or [2-14C]mevalonate into 14C-labeled bile acids and by GLC quantitation of bile acids secreted into the culture media. Individual bile acids, bile acid analogues, combination of bile acids and mixture of bile acids with phosphatidylcholine and cholesterol failed to inhibit bile acid synthesis in cultured hepatocytes. The addition of UDCA or UCA to the culture medium resulted in a marked increase in the intracellular level of both bile acids, and in the case of UDCA there was a 4-fold increase in beta-muricholate. These results demonstrate effective uptake and metabolism of these bile acids by the rat hepatocytes. UDCA, UCA, TUDCA and GUDCA also failed to inhibit cholesterol-7 alpha-hydroxylase activity in microsomes prepared from cholestyramine-fed rats. The current data confirm and extend our previous observations that, under conditions employed, neither single bile acid nor a mixture of bile acids with or without phosphatidylcholine and cholesterol inhibits bile acid synthesis in primary rat hepatocyte cultures. We postulate that mechanisms other than a direct effect of bile acids on cholesterol-7 alpha-hydroxylase might play a role in the regulation of bile acid synthesis.  相似文献   

11.
Significant advances have been made in the past few years in our understanding of the mechanism of synthesis of fatty acids, the structural organization of fatty acid synthetase complexes and the mechanism of regulation of activity of these enzyme systems. Numerous fatty acid synthetase complexes have been purified to homogeneity and the mechanism of synthesis of fatty acids by these enzyme systems has been ascertained from tracer, and recently, kinetic studies. The results obtained by these methods are in complete agreement. Furthermore, the kinetic results have indicated that fatty acid synthesis proceeds by a seven-site ping-pong mechanism. Several of the fatty acid synthetases have been dissociated completely to nonidentical half-molecular weight subunit species and these have been separated by affinity chromatography. From one of these subunits acyl carrier protein has been obtained. Whether the nonidentical subunits can be dissociated into individual proteins or whether these subunits are each comprised of one peptide is still a matter of controversy. However, it appears to us that each of the half-molecular weight subunits is indeed comprised of individual proteins. Studies on the regulation of activity of fatty acid synthetase complexes of avian and mammalian liver have resulted in the separation by affinity chromatography of three species (apo, holo-a and holo-b) of fatty acid synthetase. Since these species have radically different enzyme activities they may provide a mechanism of short-term regulation of fatty acid synthetase activity. Other studies have shown that the quantity of avian and mammalian liver fatty acid synthetases is controlled by a change in the rate of synthesis of this enzyme complex. This change in the rate of synthesis of enzyme complex is under the control of insulin and glucagon. The former hormone increases the rate of enzyme synthesis, whereas the latter decreases it. Further studies on fatty acid synthetase complexes will undoubtedly concentrate upon more refined aspects of the structural organization of these enzyme systems, including the sequencing of acyl carrier proteins, the effects of protein-protein interaction on the kinetics of the partial reactions of fatty acid synthesis catalyzed by separated enzymes of the complex, the mechanism of hormonal regulation of fatty acid synthetase activity and x-ray diffraction analysis of subunits and complex.  相似文献   

12.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

13.
Ribonucleic acid polymerase and deoxyribonucleic acid polymerase have been partially purified from bovine lymphosarcoma, lymph node, and thymus. An examination of the deoxyribonucleic acid requirements of the two enzymes indicates that “native” deoxyribonucleic acid is the preferred template for ribonucleic acid synthesis; heat-denatured deoxyribonucleic acid is considerably less active. The primer requirements for deoxyribonucleic acid synthesis differ: “native” deoxyribonucleic acid is usually inactive, while denatured deoxyribonucleic acid is active. The two enzymes also differ in pH optima and in their requirements for metal cofactors.  相似文献   

14.
Usnic acid, a highly functionalized dibenzofuran, is a polyketide secondary metabolite produced by several species of lichens. Synthesis of usnic acid from commercially available starting material was accomplished in two steps. The synthesis involves the methylation of phloracetophenone followed by oxidation with horseradish peroxidase. This work will lay the foundation for further biosynthetic studies on usnic acid.  相似文献   

15.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

16.
1. Chicken pancreas has been shown to synthesize and secrete uric acid. Uric acid synthesis from xanthine in vitro by isolated pancreatic acinii is saturable and dependent on the activity of xanthine dehydrogenase. 2. Chicken pancreas is unable to synthesize uric acid de novo but the variety of substrates which support urate synthesis suggests that it occurs by the purine degradation pathway.  相似文献   

17.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

18.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

19.
Koga J  Kubota H  Gomi S  Umemura K  Ohnishi M  Kono T 《Plant physiology》2006,140(4):1475-1483
When plants interact with certain pathogens, they protect themselves by generating various defense responses. These defense responses are induced by molecules called elicitors. Since long ago, composts fermented by animal feces have been used as a fertilizer in plant cultivation, and recently, have been known to provide suppression of plant disease. Therefore, we hypothesized that the compounds from animal feces may function as elicitors of plant defense responses. As a result of examination of our hypothesis, an elicitor of rice defense responses was isolated from human feces, and its structure was identified as cholic acid (CA), a primary bile acid in animals. Treatment of rice (Oryza sativa) leaves with CA induced the accumulation of antimicrobial compounds (phytoalexins), hypersensitive cell death, pathogenesis-related (PR) protein synthesis, and increased resistance to subsequent infection by virulent pathogens. CA induced these defense responses more rapidly than did fungal cerebroside, a sphingolipid elicitor isolated from the rice pathogenic fungus Magnaporthe grisea. Furthermore, fungal cerebroside induced both types of rice phytoalexins, phytocassanes and momilactones, whereas CA mainly induced phytocassanes, but not momilactones. In the structure-activity relationship analysis, the hydroxyl groups at C-7 and C-12, and the carboxyl group at C-24 of CA contributed to the elicitor activity. These results indicate that CA is specifically recognized by rice and is a different type of elicitor from fungal cerebroside. This report demonstrated that bile acid induced defense responses in plants.  相似文献   

20.
A series of recombinant Escherichia coli strains have been constructed and evaluated for their ability to synthesize p-hydroxybenzoic acid from glucose under fed-batch fermentor conditions. The maximum concentration of p-hydroxybenzoic acid synthesized was 12 g/L and corresponded to a yield of 13% (mol/mol). Synthesis of p-hydroxybenzoic acid began with direction of increased carbon flow into the common pathway of aromatic amino acid biosynthesis. This was accomplished in all constructs with overexpression of a feedback-insensitive isozyme of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Expression levels of enzymes in the common pathway of aromatic amino acid biosynthesis were also increased in all constructs to deliver increased carbon flow from the beginning to the end of the common pathway. A previously unreported inhibition of 3-dehydroquinate synthase by L-tyrosine was discovered to be a significant impediment to the flow of carbon through the common pathway. Chorismic acid, the last metabolite of the common pathway, was converted into p-hydroxybenzoic acid by ubiC-encoded chorismate lyase. Constructs differed in the strategy used for overexpression of chorismate lyase and also differed as to whether mutations were present in the host E. coli to inactivate other chorismate-utilizing enzymes. Use of overexpressed chorismate lyase to increase the rate of chorismic acid aromatization was mitigated by attendant decreases in the specific activity of DAHP synthase and feedback inhibition caused by p-hydroxybenzoic acid. The toxicity of p-hydroxybenzoic acid towards E. coli metabolism and growth was also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号