首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of protein-free and starvation diets on the migration of cells from the crypts onto and up the villi of the rat ileum was studied. Rats starved for 3, 7, or 10 days or fed a protein-free diet (PFD) for 3, 7, or 11 wk were injected with thymidine-3H and sacrificed at timed intervals. The time required for the labeled cells to first appear on the villi of experimental animals was longer than in the controls. This was the result of an elongated cycle in the protein-depleted animals and a lengthening of the maturation period in both the starved and protein-depleted animals. Determination of the distance which labeled cells had migrated up the villi in control and experimental animals, after thymidine-3H injection, indicated that cells in animals starved for 7 days migrated more rapidly than those in the fed controls, while those of 10-day starved animals moved more slowly. The cells of animals fed PFD for 3 wk migrated up the villi more rapidly, those of animals depleted for 7 wk migrated at the same time rate, and those of 11-wk PFD animals migrated more slowly than the fed controls. There is apparently no correlation between the cell cycle time in the crypt cells and the rate of migration of cells up the villus.  相似文献   

2.
Following a period of fasting, feeding a normal diet results in a burst of DNA synthesis in the crypts of the colonic epithelium. This is due largely to a prompt entry of cells, blocked in G1, into S. Peak levels of S cellularity exceed 4 times the fasting, and 2 times the normal fed, control values. Refeeding a low residue diet (soluble casein, glucose and corn oil) results in a return to control levels of proliferative activity, but no hyperplasia. However, in jejunum and ileum, refeeding is followed by a return to near control levels of proliferation with only a slight overshoot in S phase cellularity. During the fasting period, the ileal crypt proliferative compartment (Pc-zone) and total crypt cellularity decline significantly. These changes are accompanied by an increase in the total cycle time, due to an equivalent lengthening of the G1 and S phases. Following refeeding, there is a reduction in the cycle time and a gradual return to the control values for the Pc-zone size and cellularity. In the colon, fasting has no effect on the Pc-zone size or total crypt cellularity. There is an approximate doubling of the cycle time due solely to an increase in G1. Following refeeding there is an increase in the Pc-zone size and crypt cellularity and a marked shortening of the cycle time. Evidence that a G1 cycle blockade is induced in the colon by fasting is given by a lengthening of the G1 period and by stathmokinetic studies employing vincristine.  相似文献   

3.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

4.
Following provision of sucrose to starved, stationary phase pea root meristems, G1 and G2 cells enter DNA synthesis and mitosis, respectively. Puromycin (450 μg/ml) and cycloheximide (5 μg/ml) completely prevent this initiation of progression through the cell cycle. Actinomycin D (10 μg/ml) has no effect on the initial entry of G1 and G2 cells into S and mitosis, although later entry is prevented. The resistance of the cells to actinomycin D is lost slowly with time in medium without sucrose, suggesting that an RNA required for the resumption of proliferative activity is being gradually lost. The effects of the inhibitors on transitional and proliferative phase meristem cells indicate that such dividing cells do indeed have sufficient of the requisite RNA for 8-12 hr progression through the cycle, but that protein synthesis is required continuously. It is suggested that this RNA is the one lost slowly during starvation, allowing starved cells to reinitiate progression through the cycle in the presence of actinomycin D.  相似文献   

5.
Summary In Fanconi anemia (FA) cells the duration of the G2 phase of the cell cycle prolonged. Such a slowing of the G2 phase can be induced in normal cells by irradiation with rays during S phase, which also further increases the duration of G2 in FA cells. The addition of caffeine during the last 7h of culture shortens the G2 phase in both nonirradiated and irradiated FA cells. In nonirradiated normal cells it may have no effect or may increase G2 phase duration, but in irradiated normal reduces the slowing of G2 induced by the radiation. This suggests that FA cells recognize and repair preexisting DNA lesions during G2 phase and that caffeine inhibits this process. The principal anomaly in FA may be a deficient repair during S phase, as manifest in the prolonged postreplication repair period during G2 phase required to repair the larger number of lesions passing through S phase.  相似文献   

6.
The action of tubulosine on the mitotic cycle was studied using continuous labelling with tritiated thymidine. This alkaloid provokes a lengthening of the G1 and S phases and a blocking of G2 is totally reversible when the treatment is followed by recovery in normal medium. At a dose of tubulosine which induces a reversible mitostasis in the shortest possible time the lengthening of the phases of the cell cycle was estimated by three different techniques: labelled mitoses for the determination of G2; labelling intensity for the determination of S; binucleate cells for the determination of T, and an original technique using labelling index of binucleate cells for the determination of G1. The limits of the technique of labelled mitosis together with the interest of the technique aiming at the direct determination of G1 in the case of a perturbed cycle are then discussed.  相似文献   

7.
Summary. Proliferating cells of Allium cepa L. roots became adapted to hypoxia (5% oxygen) and cold (10°C) by acquiring new steady-state kinetics of growth. The cell cycle time increased from the 17.6 h in control meristems up to 29.7 and 69.0 h under hypoxia and cold conditions, respectively. Acclimation of the proliferating cells was stress specific. No acclimation took place after 24 h of heat treatment (40°C). Under cold treatment, all cycle phases enlarged uniformly. However, under hypoxia, while the G1 and S cycle phases roughly doubled in their timing, the expected checkpoint-dependent lengthening of G2 did not take place. This failure in lengthening G2 in response to hypoxia correlated with a failure in the overinduction of a single peptide with a molecular mass of about 134 kDa which is among those recognised by an HSP90 antibody. Moreover, the presence of this large peptide of the HSP90 family proved to be a marker for cell proliferation. It was always absent from the contiguous differentiated cells of the root. Lastly, the mitochondrial chaperonin recognized by an HSP60 antibody in these roots not involved in photosynthesis was always higher in the proliferating than in the nonproliferating cells.  相似文献   

8.
CIRCADIAN RHYTHMS IN MOUSE EPIDERMAL BASAL CELL PROLIFERATION   总被引:2,自引:0,他引:2  
Several kinetic parameters of basal cell proliferation in hairless mouse epidermis were studied, and all parameters clearly showed circadian fluctuations during two successive 24 hr periods. Mitotic indices and the mitotic rate were studied in histological sections; the proportions of cells with S and G2 phase DNA content were measured by flow cytometry of isolated basal cells, and the [3H]TdR labelling indices and grain densities were determined by autoradiography in smears from basal cell suspensions. The influx and efflux of cells from each cell cycle phase were calculated from sinusoidal curves adapted to the cell kinetic findings and the phase durations were determined. A peak of cells in S phase was observed around midnight, and a cohort of partially synchronized cells passed from the S phase to the G2 phase and traversed the G2 phase and mitosis in the early morning. The fluctuations in the influx of cells into the S phase were small compared with the variations in efflux from the S phase and the flux through the subsequent cell cycle phases. The resulting delay in cell cycle traverse through S phase before midnight could well account for the accumulation of cells in S phase and, therefore, also the subsequent partial synchrony of cell cycle traverse through the G2 phase and mitosis. Circadian variations in the duration of the S phase, the G2 phase and mitosis were clearly demonstrated.  相似文献   

9.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

10.
Summary Observations are presented on the patterns of DNA synthesis and mitotic activity in medullary parenchyma cells excised from tubers ofHelianthus tuberosus in four different periods of dormancy. Dormancy break (activation) was induced byin vitro culture on media added with 2,4-dichlorophenoxyacetic acid. The cell cycle responsein vitro to different combinations of growth substances has also been investigated.The results show that remarkable changes in the timing of the first and second cell cycles and their phases occur with the progression of dormancy. With increasing time after tuber harvest, the following behaviours are observed: (i) a lengthening of the first cell cycle, chiefly due to a lengthening of the G2 phase (G2 is absent at the beginning of dormancy) and an increase in the time interval between the start of thein vitro culture and the onset of the first mitotic wave; (ii) an increased duration of the S phase; (iii) a remarkable reduction in the cell synchrony.These behaviours, as indicated also by their comparison with thein vitro response of the cell cycle to different hormonal treatments, seem to depend on the physiological status of the tubers at the time of explant. It is concluded that the analysis of the cell cycle is an useful tool for understanding some aspects of such a complex physiological situation as dormancy.Istituto di Mutagenesi e Differenziamento del C.N.R., Pisa, Italy, publication no. 321.  相似文献   

11.
The objective of this study was to test the concept that the G1 period lacks any specific function in the life cycle of mammalian cells and hence could be drastically reduced without any effect on the generation time. HeLa cells were grown in medium containing an optimum dose (60 μM) of hydroxyurea at which the duration of S period was prolonged with little or no increase in generation time. At this concentration of hydroxyurea, we observed a maximum of 3 h (or 28.5%) reduction in the G1 period. We also studied the effects of synchronization in S phase by single and double thymidine blocks on cell size and its relationship to the duration of G1 in the subsequent cycle. By these treatments, we could reduce the G1 period by not more than 2 to 3 h. The reduction in G1 period was not directly proportional to the size (volume) of the G1 cells. These results suggest that G1 period has certain specific functions and cannot be eliminated by alterations in culture conditions.  相似文献   

12.
The non-transmembrane protein tyrosine phosphatase, PTP-S, is located predominantly in the cell nucleus in association with chromatin. Here we have analysed the expression of PTP-S upon mitogenic stimulation and during cell division cycle. During liver regeneration after partial hepatectomy, PTP-S mRNA levels increased 16-fold after 6 h (G1 phase) and declined thereafter. Upon stimulation of serum starved cells in culture with serum, PTP-S mRNA levels increased reaching a maximum during late G1 phase and declined thereafter. No significant change in PTP-S RNA levels was observed in growing cells during cell cycle. PTP-S protein levels were also found to increase upon mitogenic stimulation. Upon serum starvation for 72 h, PTP-S protein disappears from the nucleus and is seen in the cytoplasm; after 96 h of serum starvation the PTP-S protein disappears from the nucleus as well as cytoplasm. Refeeding of starved cells for 6 h results in reappearance of this protein in the nucleus. Our results suggest a role of this phosphatase during cell proliferation.  相似文献   

13.
tsAF8, ts13, tsHJ-4, and TK?ts13 cells are G1-specific temperature-sensitive (ts) mutants of BHK cells that do not enter S phase when serumstimulated from quiescence at nonpermissive temperature (39.6°-40.6°). TK?ts13 are, in addition, defective in thymidine kinase. Different G1 functions must be involved in these cells, since the first three cell lines complement each other when forming heterokaryons. We have used these cells to study the role of the nucleus in the cytoplasmic expression of these G1 functions during the transition of cells from the non-proliferating to the proliferating state. We fused cytoplasts from either serumstarved (G0) or serum-stimulated (S) tsAF8 cells with G0-ts13, G0-tsHJ-4, and G0-TK?ts13 recipient cells and determined, after serum stimulation of the fusion products, which type of cytoplasts could complement the defective G1 functions. Cytoplasts from S-tsAF8 cells complemented all three functions, i.e., cybridoids between S phase cytoplasts and ts13 or tsHJ-4 recipient cells entered S at the nonpermissive temperature, and TK?ts13 recipient cells incorporated exogenous thymidine. Cytoplasts isolated from G0-tsAF8 cells (3 days of serum starvation) complemented ts13 cells but not tsHJ-4 and TK?ts13 cells. Cytoplasts from 6-day starved tsAF8 cells lost the complementing capacity for ts13 cells. However, when the 6-day starved tsAF8 cells were fused with G0-ts13 cells, the heterokaryons entered S phase at the nonpermissive temperature. Also, cytoplasts isolated from the 6-day starved cells that were serum stimulated for 40 hr before enucleation regained the capacity to complement ts13 cells. These results demonstrate that three functions required in G1 cannot be detected in the cytoplasm of serum-starved cells, although they are present in the cytoplasm of S-phase cells. These results suggest that a functional nucleus is required for the cytoplasmic appearance of certain G1 functions in serumstimulated cells.  相似文献   

14.
The proliferation rate of mammalian cells is regulated normally in the G1 phase of the cell cycle. During this phase, it is convenient to assign positive and negative roles to the molecular programs that regulate the duration of G1 and the phase transition from G1 to S phase. Density-dependent inhibition of cellular proliferation results in an increase in the duration of G1. This form of regulation is due to both secreted factors and cell—cell contact. Serum is mitogenic to a variety of mammalian cell types. Because quiescent cells enter S phase as a result of serum addition to culture media, serum is usually regarded as a source of positive regulatory growth factors. We have measured the length of the G1, S and G2+ M phases of NIH 3T3 cells during exponential growth as a function of cell density and serum concentration. The G1 length increases during exponential growth as a function of density while S and G2+ M are relatively constant. Further, this increase in G1 phase time, or density mediated negative regulation, is inhibited by increasing serum concentration. This phenotype is saturable between 10% to 20% serum. Serum concentrations above 2.5% are able to increase the rate of cell cycling (decrease the G1 phase time) by inhibiting density dependent negative regulation of NIH 3T3.  相似文献   

15.
Circadian variations in the proliferative activity of squamous epithelia are well known. However, circadian variations in the duration of the various cell cycle phases (S, G2 and mitosis) have been disputed. the percent labelled mitoses method, which is traditionally used to obtain duration of cell cycle phases, is poorly suited for identification of circadian variations. Therefore methods combining changes in compartment size (cell cycle phase) and cellular flux through the compartments have been used. Three different methods using such data are presented. These incorporate various simplifying assumptions that cause methodological errors. Limits for use of the different methods are indicated. the use of all three methods gives comparable and pronounced circadian variations in the duration of S and G2 phase. These results are also compatible with circadian variations in the mitotic duration, but they may also represent artefacts due to sensitivity to model errors.  相似文献   

16.
The purpose of this 42-day study was to investigate the effects of dietary excess vanadium on spleen growth and lesions by determining morphological changes and cell cycle of spleen. Four hundred twenty 1-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, 60 ppm of vanadium supplied as ammonium metavanadate. When compared with that of control group, the relative weight of spleen was significantly raised in 5- and 15-ppm groups, but depressed in 45- and 60-ppm groups. The gross lesions of spleen showed obvious atrophy with decreased volume and pale color in 45- and 60-ppm groups. Histopathologically, lymphocytes in splenic corpuscle and periarterial lymphatic sheath were variously decreased in number in 30-, 45-, and 60-ppm groups. The percentage of static phase (G0/G1) was significantly decreased, and the percentage of synthesis period (S) phase and the proliferating index (PI) were significantly increased in 5- and 15-ppm groups. The percentage of G0/G1 phase was significantly increased, and the percentage of mitotic phase (G2 + M), S phase, and PI significantly decreased in 45- and 60-ppm groups. These results suggested that dietary excess vanadium (45 and 60 ppm) could inhibit growth of spleen and induce lesions in spleen in chicken.  相似文献   

17.
When Chinese hamster (CHO-K1) cells are grown as monolayer cultures, they eventually reach a population-density plateau after which no net increase in cell numbers occurs. the kinetics of aged cells in nutritionally deprived (starved) or density-inhibited (fed) late plateau-phase cultures were studied by four methods: (i) Reproductive integrity and cell viability were monitored daily by clonogenic-cell assay and erythrosin-b dye-exclusion techniques. (ii) Mitotic frequencies of cells from 18 day old cultures were determined during regrowth by analysing time-lapse video microscope records of dividing cells. (iii) Tritiated-thymidine ([3H]TdR) auto-radiography was used to determine the fractions of DNA-synthesizing cells in cultures entering plateau phase and during regrowth after harvest. (iv) the rate of labelled nucleoside uptake and incorporation into DNA was measured using liquid scintillation or sodium iodide crystal counters after labelling with [3H]TdR or [125]UdR. Non-cycling cells in starved cultures accumulate primarily as G1, phase cells. Most cells not in G1 phase had stopped in G2, phase. Very few cells (< 2%) were found in S phase. In contrast, about half of the cells in periodically fed cultures were found to be in DNA-synthetic phase, and the percentage of these S phase cells fluctuated in a manner reflecting the frequency of medium replacement. Populations of both types of plateau-phase cultures demonstrate extremely coherent cyclic patterns of DNA synthesis upon harvest and reculturing. They retain this high degree of synchrony for more than three generations after the resumption of growth. From these data it is concluded that nutritionally deprived (starved) late plateau-phase cells generally stop in either G1, or G2, phase, whereas periodically fed late plateau-phase cultures contain a very large fraction of cycling cells. Populations of cells from these two types of non-expanding cultures are kinetically dissimilar, and should not be expected to respond to extracellular stimuli in the same manner.  相似文献   

18.
The generation time of a Chinese hamster cell line was varied by the use of different lots of sera in the culture media. Analysis of the division waves following thymidine synchronization showed that lengthening of the generation time was a result of an increase in duration of the G1 phase and that thymidine treatment reduced the duration of G1 back to its minimum value.  相似文献   

19.
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.  相似文献   

20.
The cytological effects of 2 mM hydroxyurea upon Chinese hamster cells at various phases of the cell cycle were examined. Cells in the G1, G2, or M phases of the generation cycle treated with hydroxyurea showed no chromosomal aberrations. Cell treated in S phase became moribund and eventually lysed. Some of these moribund S cells reached mitosis much later and were found to have chromatid aberrations. Cells in the log phase of growth, surviving exposure to 2 mM hydroxyurea for six hours, also showed no aberrations. Thus, viable (colony-forming) cells, resulting from synchrony procedures with hydroxyurea are free of chromosomal aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号