首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of visible light on Escherichia coli H10407 in seawater microcosms was investigated. Light damage was estimated by loss of colony-forming ability. Illumination of E. coli suspended in oligotrophic seawater with visible light at an intensity of about 40 klux caused a drastic decrease of culturable bacteria which turned to a viable but non-culturable state. In seawater E. coli exhibited weak metabolic activity as estimated by 3H methyl-thymidine incorporation in the cell. Visible light did not significantly alter this metabolic activity and did not involve detectable oxidation of lipid membranes as evaluated by gas chromatography analysis of fatty acids. The involvement of oxygen and reactive oxygen species in phototoxicity was studied. A decrease of the toxic effect was observed when E. coli was exposed to visible light under anaerobic conditions. Scavengers of reactive oxygen species exhibited variable protective effects. β-Carotene, a singlet oxygen scavenger, and superoxide dismutase were equally ineffective. On the other hand, catalase, which eliminates hydrogen peroxide and thiourea, a hydroxyl radical scavenger, showed a net protection. In addition desferrioxamine B, an iron chelator, was also effective in reducing phototoxicity, probably by preventing hydroxyl radical generation by decomposition of hydrogen peroxide in the presence of iron (Fenton reaction). Therefore, hydrogen peroxide and hydroxyl radical seem to be reactive intermediates of oxygen-dependent (type II) photosensitized reactions.  相似文献   

2.
The effect of red wine on oxidative stress and hypercholesterolemia induced by feeding a high-cholesterol diet (supplemented with 1.65% of cholesterol (w/w) for 4 weeks) to female Wistar rats was examined. When red wine was simultaneously supplemented to high-cholesterol diet, total cholesterol, triglycerides, atherogenic index and lipid peroxidation products significantly decreased compared with the high-cholesterol diet alone, while GSH content and antioxidative enzymes activities were enhanced. In the hypercholesterolemic rat the excretion of fecal bile acids, as well as their plasma and hepatic concentrations were increased significantly. Administration of red wine enhanced these values, indicating an increase in the cholesterol degradation. These results suggest that red wine may have a protective effect against oxidative stress, hypercholesterolemia and atherogenic index induced by high-cholesterol diet.  相似文献   

3.
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.  相似文献   

4.
This study evaluated the protective effect of Montilla-Moriles appellation red wine (Cordoba, Spain) on oxidative stress, course and intensity of symptoms in experimental diabetes induced by the injection of streptozotocin in male Wistar rats. The rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) and given water and red wine separately. After 4 weeks of treatment, blood samples were obtained to determine sugar and fructosamine concentrations in blood plasma, serum insulin concentration, and percentage of glycosylated hemoglobin in blood. The kidney, liver, and pancreas were removed to determine lipid peroxidation levels, reduced glutathione content, and antioxidative enzyme activity. A significant increase of glucose concentration in urine was found in the rats after injecting the streptozotocin. The administration of red wine before streptozotocin elevated reduced glutathione content and antioxidative enzyme activity, while lowering the lipid peroxidation level. Moreover, the red wine induced decreased levels of glycemia, plasma fructosamine and percentage of glycosylated hemoglobin, while increasing levels of insulin. These data suggest that red wine has a protective effect against oxidative stress and diabetes induced by streptozotocin.  相似文献   

5.
Consumption of red wine has been associated with health promotion and disease prevention. We have previously found that the intestine of zinc-deficient (ZD) rats develop oxidative damage associated with inflammation. Here we have used this model to investigate whether red wine polyphenols could protect against intestinal injury and, if so, whether this protection was achieved through antioxidant and anti-inflammatory activity. The intestinal alterations induced by zinc deficiency such as morphological damage, increased TBA-RS level and CuZn-superoxide dismutase activity, and decreased glutathione peroxidase activity, did not develop with the administration to ZD rats of a suspension of dealcoholated red wine (RWS). The same treatment induced in control rats a decrease of TBA-RS level but also of glutathione peroxidase and catalase activity. Treatment with RWS to ZD rats prevented a marked mucosal macrophage and neutrophil infiltration. The expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and cytokine-induced neutrophil chemoattractant (CINC), was induced by zinc deficiency, whereas that of the anti-inflammatory interleukin-10 was suppressed. Treatment with RWS reduced CINC expression. These results report a novel activity of red wine polyphenols in downregulation of intestinal CINC expression, which likely protects cells against inflammatory processes.  相似文献   

6.
The use of doxorubicin (DOX) in the treatment of solid tumors is limited by cardiotoxicity essentially due to oxidative stress generation. The aim of this study was to identify coumarin derivatives displaying a protective antioxidant activity without affecting DOX antitumoral efficiency. A set of eighteen coumarinic derivatives was synthesized. Their antioxidant power was evaluated in vitro with the FRAP (ferric reducing ability of plasma) method and in human breast adenocarcinoma MCF7 cells using H(2)DCFDA (2',7'-dichlorodihydrofluorescein diacetate) in a cytometric analysis. 4-Methyl-7,8-dihydroxycoumarin was found to exhibit an important antioxidant strength, a low cytotoxicity, and could decrease ROS (reactive oxygen species) production generated by DOX treatment without affecting DOX cytotoxicity in MCF7 cells.  相似文献   

7.
Oxalate, one of the major constituents of renal stones is known to induce free radicals which damage the renal membrane. Damaged epithelia might act as nidi for stone formation aggravating calcium oxalate precipitation during hyperoxaluria. In the present study, the beneficial effects of fucoidan on oxalate-induced free radical injury were investigated. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two groups by administration of 0.75% ethylene glycol in drinking water for 28 days and one of them was treated with fucoidan from Fucus vesiculosus at a dose of 5 mg/kg b.wt subcutaneously commencing from the 8th day of induction. A control and drug control (fucoidan alone) was also included in the study. The extent of renal injury in hyperoxaluria was evident from the increased activities of alkaline phosphatase, gamma-glutamyl transferase, beta-glucuronidase, N-acetyl-beta-D-glucosaminidase in urine. There was a positive correlation between plasma malondialdehyde levels and renal membrane damage indicating a striking relation between free radical formation and cellular injury. Increased protein carbonyl and decreased thiols further exemplified the oxidative milieu prevailing during hyperoxaluria. Decreased renal membrane ATPases accentuated the renal membrane damage induced by oxalate. Renal microscopic analysis showed abnormal findings in histology as an evidence of oxalate damage. The above biochemical and histopathological discrepancies were abrogated with fucoidan administration, indicating its protective role in oxalate mediated peroxidative injury.  相似文献   

8.
Although iron is a first-line pro-oxidant that modulates clinical manifestations of various systemic diseases, including diabetes, the individual tissue damage generated by active oxidant insults has not been demonstrated in current animal models of diabetes. We tested the hypothesis that oxidative stress is involved in the severity of the tissues injury when iron supplementation is administered in a model of type 1 diabetes. Streptozotocin (Stz)-induced diabetic and non-diabetic Fischer rats were maintained with or without a treatment consisting of iron dextran ip at 0.1 mL day?1 doses administered for 4 days at intervals of 5 days. After 3 weeks, an extensive increase (p < 0.001) in the production of reactive oxygen species (ROS) in neutrophils of the diabetic animals on iron overload was observed. Histological analysis revealed that this treatment also resulted in higher (p < 0.05) tissue iron deposits, a higher (p < 0.001) number of inflammatory cells in the pancreas, and apparent cardiac fibrosis, as shown by an increase (p < 0.05) in type III collagen levels, which result in dysfunctional myocardial. Carbonyl protein modification, a marker of oxidative stress, was consistently higher (p < 0.01) in the tissues of the iron-treated rats with diabetes. Moreover, a significant positive correlation was found between ROS production and iron pancreas stores (r = 0.42, p < 0.04), iron heart stores (r = 0.54, p < 0.04), and change of the carbonyl protein content in pancreas (r = 0.49, p < 0.009), and heart (r = 0.48, p < 0.02). A negative correlation was still found between ROS production and total glutathione content in pancreas (r = ?0.50, p < 0.03) and heart (r = ?0.45, p < 0.04). In conclusion, our results suggest that amplified toxicity in pancreatic and cardiac tissues in rats with diabetes on iron overload might be attributed to increased oxidative stress.  相似文献   

9.
Increased accumulation of NT (3‐nitrotyrosine) and PARylated [poly(ADP‐ribosyl)ated] proteins in the tissues of diabetics are associated with diabetes complications (diabetes neuropathy, nephropathy and retinopathy). Red wine (its polyphenols are considered to be the main active components) can act as ROS (reactive oxygen species) scavengers, iron chelators and enzyme modulators. This study is novel in investigating the effect of red wine in preventing the accumulation of NT and PARylated proteins in the sciatic nerve, DRG (dorsal root ganglia), spinal cord, kidney and retina of diabetic animals. We have shown that during the experiment the body weight of control and diabetic groups of rats with consumption of red wine was significantly increased, by 52% and 19% accordingly. The significant increase in the content of NT in the sciatic nerve, DRG, spinal cord, kidney and retina, and PARylated proteins in the sciatic nerve, renal glomeruli and retinae of diabetic rats was partly or completely prevented by treatment with red wine. Red wine and its polyphenol preparations might be a promising option in the prevention and treatment of diabetic complications.  相似文献   

10.
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.  相似文献   

11.
Stress can be defined as physical and psychological modifications that disrupt the homeostasis and the balance of organisms. Stress is known as one of the most important reasons of several diseases. In the present study, the anti-stress effect of betaine was evaluated with reference to its antioxidant property. Wistar albino rats were divided into four groups such as control, betaine, restraint stress (6 h/day for 30 days), and betaine + restraint stress. The oxidative damage was assessed by measuring the protein and corticosterone in plasma, lipid peroxidation, non-enzymic (reduced glutathione), and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase, and superoxide dismutase) in the lymphoid organs of thymus and spleen. Followed by the induction of restraint stress, the non-enzymic and enzymic antioxidants were significantly decreased with concomitant increase observed in the levels of corticosterone and lipid peroxidation. Oral pretreatment with betaine (250 mg/kg body weight daily for a period of 30 days) significantly (P < 0.001) prevented the restraint stress-induced alterations in the levels of protein and corticosterone in plasma of experimental groups of rats. It counteracted the restraint stress-induced lipid peroxidation and maintained the antioxidant defense system in the lymphoid tissues at near normal. The findings suggest that betaine possesses significant anti-stress activity, which may be due to its antioxidant property.  相似文献   

12.
Secondary sexual traits (SST) are usually thought to have evolved as honest signals of individual quality during mate choice. Honesty of SST is guaranteed by the cost of producing/maintaining them. In males, the expression of many SST is testosterone-dependent. The immunocompetence handicap hypothesis has been proposed as a possible mechanism ensuring honesty of SST on the basis that testosterone, in addition to its effect on sexual signals, also has an immunosuppressive effect. The immunocompetence handicap hypothesis has received mixed support. However, the cost of testosterone-based signalling is not limited to immunosuppression and might involve other physiological functions such as the antioxidant machinery. Here, we tested the hypothesis that testosterone depresses resistance to oxidative stress in a species with a testosterone-dependent sexual signal, the zebra finch. Male zebra finches received subcutaneous implants filled with flutamide (an anti-androgen) or testosterone, or kept empty (control). In agreement with the prediction, we found that red blood cell resistance to a free radical attack was the highest in males implanted with flutamide and the lowest in males implanted with testosterone. We also found that cell-mediated immune response was depressed in testosterone-treated birds, supporting the immunocompetence handicap hypothesis. The recent finding that red blood cell resistance to free radicals is negatively associated with mortality in this species suggests that benefits of sexual signalling might trade against the costs derived from oxidation.  相似文献   

13.
Membrane fusion mediated by coiled coils: a hypothesis   总被引:6,自引:0,他引:6       下载免费PDF全文
A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.  相似文献   

14.
A chemiluminescence (CL) method was developed for the evaluation of oxidative damage to biomolecules induced by singlet oxygen ((1)O(2)) and for the evaluation of the protective effects of antioxidants. The (1)O(2) was generated from the reaction of H(2)O(2)+OCl(-). Results showed that the CL signal from the reaction of H(2)O(2)+OCl(-) was weak, however, it was enhanced dose-dependently with the addition of DNA and unsaturated fatty acid, respectively. Spectra analysis indicated that the enhanced CL could be ascribed to the decay of triplet-excited carbonyl compounds, which were generated from the reaction of (1)O(2) plus the biomolecules. On the other hand, the enhanced CL produced in the above systems could be effectively inhibited by lycopene, beta-carotene, VC, and VE, but could not be inhibited by mannitol, SOD, and NaN(3). The mechanism therein was discussed.  相似文献   

15.
Loss of parkin function is linked to autosomal recessive juvenile parkinsonism. Here we show that proteotoxic stress and short C-terminal truncations induce misfolding of parkin. As a consequence, wild-type parkin was depleted from a high molecular weight complex and inactivated by aggregation. Similarly, the pathogenic parkin mutant W453Stop, characterized by a C-terminal deletion of 13 amino acids, spontaneously adopted a misfolded conformation. Mutational analysis indicated that C-terminal truncations exceeding 3 amino acids abolished formation of detergent-soluble parkin. In the cytosol scattered aggregates of misfolded parkin contained the molecular chaperone Hsp70. Moreover, increased expression of chaperones prevented aggregation of wild-type parkin and promoted folding of the W453Stop mutant. Analyzing parkin folding in vitro indicated that parkin is aggregation-prone and that its folding is dependent on chaperones. Our study demonstrates that C-terminal truncations impede parkin folding and reveal a new mechanism for inactivation of parkin.  相似文献   

16.
Paraquat (PQ) is a widely used herbicide that can cause severe oxidative and fibrotic injuries in lung tissue. Due to the antioxidant and anti-inflammatory properties of chlorogenic acid (CGA), the present study investigated its effects on PQ-induced pulmonary toxicity. To this end, 30 male rats were randomly categorized into five groups of six. Initially, the first and third groups were treated intraperitoneally (IP) with normal saline and CGA (80 mg/kg) for 28 consecutive days, respectively. The second, fourth, and fifth groups were treated with normal saline and 20 and 80 mg/kg of CGA for 28 consecutive days, respectively, and received a single dose of PQ (IP, 20 mg/kg) on Day 7. Then, the animals were anesthetized with ketamine and xylazine, and lung tissue samples were collected for biochemical and histological examinations. The results showed that PQ significantly increased hydroxyproline (HP) and lipid peroxidation (LPO) and decreased the lung tissue antioxidant capacity. In addition, myeloperoxidase (MPO) activity increased significantly, while glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) activity declined substantially. The administration of therapeutic doses of CGA could prevent the oxidative, fibrotic, and inflammatory effects of PQ-induced lung toxicity, and these changes were consistent with histological observations. In conclusion, CGA may improve the antioxidant defense of lung tissue and prevent the spread of inflammation and the development of PQ-induced fibrotic injuries by enhancing antioxidant enzymes and preventing inflammatory cell infiltration.  相似文献   

17.
The key role of osteoblasts in skeletal fluorosis makes the exploration of the possible mechanisms of the fluoride-induced oxidative stress of osteoblasts of great importance. In this article, the in vitro effects of fluoride on the oxidative stress of osteoblasts are presented. To study the inhibitory effect of baicalein on the oxidative stress of osteoblasts, the antioxidant activity of baicalein was evaluated for osteoblasts exposed to fluoride. Calvarial osteoblasts were prepared and respectively treated with α-MEM (5% calf serum) containing 0.5, 1.0, 2.0, 4.0, 8.0, 12.0, and 20.0 mg/L fluoride for 48 h. Baicalein (10 μmol/L) was added to the cells for the same period of time as that of the fluoride treatment. Low concentrations of fluoride (0.5–2 mg F-/L) stimulated the mitochondrial activity of osteoblasts and produced significant reaction to the oxidative stress, whereas high concentrations of fluoride (≽12 mg F-/L) inhibited cell proliferation and the activity of antioxidant enzymes. This suggests that the oxidative stress induced by low concentrations of fluoride might mediate or participate in the process of fluoride inducing the proliferation of osteoblasts. The viability of osteoblasts in the high concentrations of fluoride with the addition of 10 μmol/L baicalein (≽12 mg /L) was higher than those of the same level of fluoride-treated groups without the addition of baicalein. The protective role of baicalein is obvious as an inhibitor of lipid peroxidation against the damage induced by the high concentration of fluoride.  相似文献   

18.
Mechanism of oxidative damage to fish red blood cells by ozone   总被引:1,自引:0,他引:1  
The present study was conducted to elucidate the adverse effects of ozone exposure on rainbow trout (Oncorhynchus mykiss) red blood cells (RBCs). We evaluated whether hemoglobin (Hb) or Hb-derived free iron could participate in the RBC damage using an in vitro ozone exposure system. Ozone exposure induced hemolysis, formation of methemoglobin, and RBC membrane lipid peroxidation. This RBC damage was not suppressed by the addition of a specific iron chelator (deferoxamine mesilate) to the medium but was suppressed by carbon monoxide (CO) treatment before ozone exposure. Generation of hydrogen peroxide (H2O2) in RBC was observed upon ozone exposure but was significantly suppressed by CO treatment before ozone exposure. Thus the Hb status (i.e., Hb redox condition) and H2O2 generation in RBC should play important roles in mediating RBC damage by ozone exposure. In other words, neither ozone nor its derivative directly attacked from the outside of the cell, but ozone that penetrated through the membrane derived the reactive oxygen species from Hb inside of the cell.  相似文献   

19.
Epitope-tagged glutaredoxin (GRX) was utilized to determine the role of GRX in oxidative stress-induced signaling and cytotoxicity in glucose-deprived human cancer cells (MCF-7/ADR and DU-145). GRX-overexpressing cells demonstrated resistance to glucose deprivation-induced cytotoxicity and decreased activation of c-Jun N-terminal kinase (JNK1). Deletion mutants showed the C-terminal portion of apoptosis signal-regulating kinase 1 (ASK1) bound GRX, and glucose deprivation disrupted binding. Treatment with l-buthionine-(S,R)-sulfoximine reduced glutathione content by 99% and prevented glucose deprivation-induced dissociation of GRX from ASK1. A thiol antioxidant, N-acetyl-l-cysteine, or overexpression of an H(2)O(2) scavenger, catalase, inhibited glucose deprivation-induced dissociation of GRX from ASK1. GRX active site cysteine residues (Cys(22) and Cys(25)) were required for dissociation of GRX from ASK1 during glucose deprivation. Kinase assays revealed that SEK1 and JNK1 were regulated in an ASK1-dependent fashion during glucose deprivation. Overexpression of GRX or catalase inhibited activation of ASK1-SEK1-JNK1 signaling during glucose deprivation. These results demonstrate that GRX is a negative regulator of ASK1 and dissociation of GRX from ASK1 activates ASK1-SEK1-JNK1 signaling leading to cytotoxicity during glucose deprivation. These results support the hypothesis that the GRX-ASK1 interaction is redox sensitive and regulated in a glutathione-dependent fashion by H(2)O(2).  相似文献   

20.
Mechanisms of aging: an appraisal of the oxidative stress hypothesis   总被引:25,自引:0,他引:25  
The main purpose of this article is to provide a critical overview of the currently available evidence bearing on the validity of the oxidative stress hypothesis of aging, which postulates that senescence-associated attenuations in physiological functions are caused by molecular oxidative damage. Several lines of correlative evidence support the predictions of the hypothesis, e.g., macromolecular oxidative damage increases with age and tends to be associated with life expectancy of organisms. Nevertheless, a direct link between oxidative stress and aging has not as yet been established. Single gene mutations have been reported to extend the life spans of lower organisms, such as nematodes and insects; however, such prolongations of chronological clock time survival are usually associated with decreases in the rate of metabolism and reproductive output without affecting the metabolic potential, i.e., the total amount of energy consumed during life. Studies on genetic manipulations of the aging process have often been conducted on relatively short-lived strains that are physiologically weak, whereby life-span extensions can not be unambiguously assigned to a slowing effect on the rate of aging. It is concluded that although there is considerable evidence implicating oxidative stress in the aging process, additional evidence is needed to clearly define the nature of the involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号