首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结核病对免疫学家构成了巨大的挑战,因为它是一种慢性传染性疾病,病原体具有持久性特点.在对人和动物进行实验时,检测到结核分枝杆菌适应性免疫应答的特点之一为感染早期T细胞免疫应答延迟.新近研究揭示了此种延迟应答的机制:通过结核杆菌抑制免疫细胞(CD4+和CD8+T细胞及DC)凋亡延迟应答,通过特异性Treg细胞抑制作用延迟应答.结核杆菌慢性感染期间存在IFNγ信号调节网络和ESAT-6抗原的慢性刺激作用,抗原特异性PD-1+ CD4+T细胞具有高度增殖分化为更多终末效应性T细胞的潜能,以此可调节和维持免疫应答.深入了解抗原特异性T细胞调节与维持适应性免疫应答的机制,有益于抗结核疫苗的设计和研制.  相似文献   

2.
董毅  吴利先 《生物磁学》2014,(18):3593-3595
结核分枝杆菌是引起结核病的病原体,该细菌可侵犯全身各组织器官。结核病是一种慢性传染性疾病,具有持久性特点。该细菌为胞内寄生菌,特异性免疫以细胞免疫为主,主要包括CD4+T细胞免疫和CD8+T细胞免疫。结核分枝杆菌特异性免疫应答的特点之一是感染早期T细胞免疫应答延迟。其机制与结核杆菌抑制免疫细胞(CD4+和CD8+T细胞及DC)凋亡延迟应答,通过特异性Treg细胞抑制作用延迟应答以及结核杆菌慢性感染期间存在IFN-γ信号调节网络和ESAT-6抗原的慢性刺激作用有关,以此可调节和维持免疫应答。深入了解抗原特异性T细胞特异性免疫应答的机制,有益于抗结核疫苗的研制,为临床工作提供理论依据和科学方法。  相似文献   

3.
Primary CD8+ T cell (T(CD8+)) responses to viruses are directed toward multiple Ags and shaped by both the level of Ag presentation and the underlying Ag-specific T(CD8+) repertoire. The relative importance of these factors in deciding the hierarchy of T(CD8+) responses and how they are influenced by the immunoproteasome are not well understood. Using an influenza infection model in mice deficient in various immunoproteasome subunits, we observe that Ag presentation and T(CD8+) repertoire are altered in an epitope-specific and immunoproteasome subunit-dependent manner. More importantly, we find that the level of Ag presentation and the extent of the underlying repertoire can work either alone or in concert to determine definitively the magnitude of the individual T(CD8+) responses and hence the overall T(CD8+) hierarchy. Together, these results provide a clearer understanding of how immunodominance hierarchies are established.  相似文献   

4.
The role of costimulation has previously been confined to the very early stages of the CD8+ T cell response. In this study, we demonstrate the requirement for CD27 costimulation during the later phase, but not programming of the primary CD8+ T cell response to influenza virus and reveal a novel mechanism of action for CD27 costimulation. CD27 signals, during the later phase of the primary CD8+ T cell response, prevent apoptosis of Ag-specific CD8+ T cells. Blocking CD27L (CD70) on days 6 and 8 after infection reduces the number of NP(366-374)-specific CD8+ T cells, increases their sensitivity to CD95/Fas-mediated apoptosis, and up-regulates FasL on CD4+ T cells. This reduction of NP(366-374)-specific CD8+ T cells requires the presence of CD4+ T cells and Fas signaling. Lack of CD27 signals also decreases the quality of memory CD8+ T cell responses. Memory CD8+ T cells, which express surface CD27 similar to naive cells, however, do not require CD27 costimulation during a secondary response. Thus, CD27 acts indirectly to regulate primary Ag-specific CD8+ T cell responses by preventing apoptosis of CD8+ T cells during the later phase of the primary response and is required for optimal quality of memory cells, but is not required during normally primed secondary CD8+ T cell responses.  相似文献   

5.
6.
Complex mechanisms operate on mucosal tissues to regulate immune responsiveness and tolerance. When the lymphocyte subpopulations from murine nasal-associated lymphoid tissues (NALT) were characterized, we observed an accumulation of B220(low)CD3(low)CD4(-)CD8(-)CD19(-)c-Kit(+) cells. TCR transgenic mice and athymic mice were used for monitoring T cell lineage and the presence of extrathymic T cell precursors. The majority of cells from NALT exhibited a T cell precursor phenotype (CD4(-)CD8(-)CD19(-)c-Kit(+)). Fas-independent apoptosis was their main mechanism of cell death. We also demonstrated that B220(low)CD4(-)CD8(-)CD19(-) cells from NALT exhibited the potential to down-regulate the activation of mature T cells. However, the innate immunity receptor TLR2 was also highly expressed by this cell subpopulation. Moreover, nasal stimulation with a TLR2/6 agonist resulted in a partial activation of the double-negative cells. These results suggest that the immune responses in NALT may be in part modulated by a cell subpopulation that maintains a tolerogenic milieu by its proapoptotic status and suppressive activity, which can be reverted through stimulation of a TLR signaling cascade.  相似文献   

7.
Role of cell cycle regulator p19ARF in regulating T cell responses   总被引:1,自引:0,他引:1  
Although it is well established that the processes of cellular proliferation and apoptosis are linked, the role of cell cycle regulators in T cell responses in vivo is not well understood. In recent years, tumor suppressor molecule p19(ARF) has emerged as a key cell cycle regulator important in cellular apoptosis against strong mitogenic stimuli. In this study, we compared the antigen-specific T cell responses between wild type (+/+) and p19(ARF)-deficient (p19-/-) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). p19-/- mice mounted a potent CD8 T cell response and the magnitude of expansion of LCMV-specific CD8 T cells was comparable to that of +/+ mice. Further, the clonal downsizing of the expanded virus-specific CD8 T cells and establishment of long-term T cell memory were minimally affected by p19(ARF) deficiency. Therefore, p19(ARF) function is not essential to regulate T cell responses following an acute viral infection.  相似文献   

8.
Burn patients are immunocompromised yet paradoxically are able to effectively reject allogeneic skin grafts. Failure to close a massive burn wound leads to sepsis and multiple system organ failure. Immune suppression early (3 days) after burn injury is associated with glucocorticoid-mediated T cell apoptosis and anti-inflammatory cytokine responses. Using a mouse model of burn injury, we show CD8+ T cell hyperresponsiveness late (14 days) after burn injury. This is associated with a CD8+ T cell pro- and anti-inflammatory cytokine secretion profile, peripheral lymphopenia, and accumulation of a rapidly cycling, hyperresponsive memory-like CD8+CD44+ IL-7R- T cells which do not require costimulation for effective Ag response. Adoptive transfer of allospecific CD8+ T cells purified 14 days postburn results in enhanced allogeneic skin graft rejection in unburned recipient mice. Chemical blockade of glucocorticoid-induced lymphocyte apoptosis early after burn injury abolishes both the late homeostatic accumulation of CD8+ memory-like T cells and the associated enhanced proinflammatory CD8+ T cell response, but not the late enhanced CD8+ anti-inflammatory response. These data suggest a mechanism for the dynamic CD8+ T cell response following injury involving an interaction between activation, apoptosis, and cellular regeneration with broad clinical implications for allogeneic skin grafting and sepsis.  相似文献   

9.
Lymphotactin is a potent chemotactic cytokine (chemokine) that is produced by and also attracts T and natural killer (NK) cells. We are studying whether chemokines that affect mainly T cells might also regulate immune responses by preferentially recruiting individual subsets or by affecting cytokine or other chemokine responses. In order to pursue these questions, we need to learn more about the mechanisms regulating lymphotactin production and the cell types capable of releasing this factor. We used new monoclonal antibodies against human lymphotactin to develop a sensitive antigen-capture enzyme linked immunoabsorbent assay (ELISA) that measures chemokine levels in culture fluids. Using this capture ELISA, we showed that lymphotactin could be produced by CD4+ and CD8+ T cells, but only after T cell-receptor-dependent stimulation using bacterial superantigens and not after treatment by inflammatory cytokines or lipopolysaccharide (LPS). Our data show that lymphotactin production responds mainly to T cell-receptor signals in CD4+ and CD8+ T cells, and suggests a mechanism whereby this chemokine could help to regulate T cell immune responses.  相似文献   

10.
Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.  相似文献   

11.
Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway   总被引:6,自引:0,他引:6  
Galectin-9 (Gal-9) induced the apoptosis of not only T cell lines but also of other types of cell lines in a dose- and time-dependent manner. The apoptosis was suppressed by lactose, but not by sucrose, indicating that beta-galactoside binding is essential for Gal-9-induced apoptosis. Moreover, Gal-9 required at least 60 min of Gal-9 binding and possibly de novo protein synthesis to mediate the apoptosis. We also assessed the apoptosis of peripheral blood T cells by Gal-9. Apoptosis was induced in both activated CD4(+) and CD8(+) T cells, but the former were more susceptible than the latter. A pan-caspase inhibitor (Z-VAD-FMK) inhibited Gal-9-induced apoptosis. Furthermore, a caspase-1 inhibitor (Z-YVAD-FMK), but not others such as Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), and Z-AEVD-FMK (caspase-10 inhibitor), inhibited Gal-9-induced apoptosis. We also found that a calpain inhibitor (Z-LLY-FMK) suppresses Gal-9-induced apoptosis, that Gal-9 induces calcium (Ca(2+)) influx, and that either the intracellular Ca(2+) chelator BAPTA-AM or an inositol trisphosphate inhibitor 2-aminoethoxydiphenyl borate inhibits Gal-9-induced apoptosis. These results suggest that Gal-9 induces apoptosis via the Ca(2+)-calpain-caspase-1 pathway, and that Gal-9 plays a role in immunomodulation of T cell-mediated immune responses.  相似文献   

12.
13.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

14.
Immunotherapy based on T cell responses to the tumor is believed to involve killing of cancer cells by induction of apoptosis. The predominant mechanisms are death ligand-induced signaling mainly by TNF-related apoptosis-inducing ligand (TRAIL) mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated apoptosis mediated by CD8 T cells and NK cells. Resistance against TRAIL involves loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways. Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt pathways. Apoptosis induced by immune responses is regulated by the Bcl-2 family of proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and clinical trials combining them with immunotherapy are awaited. The second group of agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an exciting combination with immunotherapy. One of the main drivers of resistance to apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic reticulum (ER) stress. These adaptive mechanisms inhibit practically all known apoptotic pathways and create an acidic environment that may reduce infiltration of lymphocytes against the tumor. The signal pathway inhibitors may be effective against these adaptive processes but additional agents that target ER stress pathways are in development. In conclusion, combination of immunotherapy with agents that target antiapoptotic mechanisms in cancer cells offers a new approach that requires evaluation in clinical trials.  相似文献   

15.
Cytokines that use the common receptor gamma-chain for regulating CD8(+) T cell responses to Ag include IL-2, IL-15, and the recently identified IL-21. The ability of these cytokines to regulate antitumor activity in mice has generated considerable interest in understanding their mode of action. In this study we compare the abilities of IL-2, IL-15, and IL-21 to stimulate immunity against tumors in a syngeneic thymoma model. Durable cures were only achieved in IL-21-treated mice. By monitoring both endogenous and adoptively transferred tumor Ag-specific CD8(+) T cells, it was determined that IL-21 activities overlap with those of IL-2 and IL-15. Similar to IL-2, IL-21 enhanced Ag activation and clonal expansion. However, unlike IL-2 treatment, which induces activation-induced cell death, IL-21 sustained CD8(+) T cell numbers long term as a result of increased survival, an effect often attributed to IL-15. These findings indicate that the mechanisms used by IL-21 to promote CD8(+) T cell responses offer unique opportunities for its use in malignant diseases and infections.  相似文献   

16.
The homeostasis of memory CD8+ T cells is regulated by cytokines. IL-15 is shown to promote the proliferation of memory CD8+ T cells, while IL-2 suppresses their division in vivo. This inhibitory effect of IL-2 appears to occur indirectly, through other cell populations including CD25+CD4+ T cells; however, the details of this mechanism remain unclear. In this study, we show that 1) both Ag-experienced and memory phenotype CD8+ T cells divided after the depletion of IL-2 in vivo; 2) this division occurred normally and CD44(high)IL-2/15Rbeta(high) CD8+ T cells generated after IL-2 depletion in IL-15 knockout (KO) and in IL-7-depleted IL-15 KO mice; 3) surprisingly, the blockade of IL-2/15Rbeta signaling in IL-2-depleted IL-15 KO mice completely abolished the division of memory CD8+ T cells, although the only cytokines known to act through IL-2/15Rbeta are IL-2 and IL-15; and 4) the expression of IL-2/15Rbeta molecules on memory CD8+ T cells was required for their division induced by IL-2 depletion. These results demonstrate that the depletion of IL-2 in vivo induced memory CD8+ T cell division by an IL-15-independent but by an IL-2/15Rbeta-dependent mechanism, suggesting the existence of a novel IL-2/15Rbeta-utilizing cytokine that acts directly on memory CD8+ T cells to promote cell division.  相似文献   

17.
CD4 T cell activation during peripheral infections not only is essential in inducing protective CD8 T cell memory but also promotes CD8 T cell function and survival. However, the contributions of CD4 T cell help to antiviral CD8 T cell immunity during central nervous system (CNS) infection are not well established. Encephalitis induced by the sublethal coronavirus JHMV was used to identify when CD4 T cells regulate CD8 T cell responses following CNS infection. Peripheral expansion of virus-specific CD8 T cells was impaired when CD4 T cells were ablated prior to infection but not at 4 days postinfection. Delayed CD4 T cell depletion abrogated CD4 T cell recruitment to the CNS but only slightly diminished CD8 T cell recruitment. Nevertheless, the absence of CNS CD4 T cells was associated with reduced gamma interferon (IFN-γ) and granzyme B expression by infiltrating CD8 T cells, increased CD8 T cell apoptosis, and impaired control of infectious virus. CD4 T cell depletion subsequent to CD4 T cell CNS migration restored CD8 T cell activity and virus control. Analysis of γc-dependent cytokine expression indicated interleukin-21 (IL-21) as a primary candidate optimizing CD8 T cell activity within the CNS. These results demonstrate that CD4 T cells play critical roles in both enhancing peripheral activation of CD8 T cells and prolonging their antiviral function within the CNS. The data highlight the necessity for temporally and spatially distinct CD4 T cell helper functions in sustaining CD8 T cell activity during CNS infection.  相似文献   

18.
B cells, but not T cells, are considered to be important for the formation of follicular dendritic cell (FDC) clusters. Stimulation with agonist mAbs against CD137 (4-1BB), a TNFR family member primarily expressed on activated T cells, was effective in promoting T cell responses, but paradoxically suppressed T-dependent humoral immunity and autoantibody production in autoimmune disease models. Our present study shows that agonistic anti-CD137 treatment activates T cells, resulting in diminished FDC networks in B cell follicles, which are important components in T-dependent humoral immune responses both before and after the initiation of an immune response. Pretreatment with anti-CD137 before the secondary immunization inhibited memory Ab responses. Interestingly, CD137 costimulation-induced diminishment of FDC is T cell dependent. In addition, both CD4(+) and CD8(+) T cells are recruited into FDC area and are able to regulate FDCs by CD137 costimulation through a direct or indirect mechanism. These studies have revealed a previously unappreciated role of T cells in the regulation of FDC networks.  相似文献   

19.
Splenic CD8alpha+ dendritic cells reportedly tolerize T cell responses by inducing Fas ligand-mediated apoptosis, suppressing IL-2 expression, or catabolizing T cell tryptophan reserves through expression of IDO. We report in this study that CD8alpha+, but not CD8alpha-, dendritic cells purified from the spleens of normal mice can tolerize the Th2 responses of cells from asthma phenotype mice through more than one mechanism. This tolerance could largely be reversed in vitro by anti-IL-10 or anti-TGFbeta Ab treatment. However, loss of direct dendritic cell-T cell contact also reduced tolerance, although to a lesser extent, as did adding the IDO inhibitor 1-methyltryptophan or an excess of free tryptophan to the cultures. Within 3 wk of reconstituting asthma phenotype mice with 1 x 10(5) OVA-pulsed CD8alpha+, but not CD8alpha-, dendritic cells, the mice experienced a reversal of airway hyperresponsiveness, eosinophilic airway responses, and pulmonary Th2 cytokine expression. This data indicates that CD8alpha+ dendritic cells can simultaneously use multiple mechanisms for tolerization of T cells and that, in vivo, they are capable of tolerizing a well-established disease complex such as allergic lung disease/asthma.  相似文献   

20.
Antigenic and costimulatory signals trigger a developmental program by which naive CD8 T cells differentiate into effector and memory cells. However, initial cytokine signals that regulate the generation of effector and memory CD8 T cells are not well understood. In this study, we show that IL-12 priming during in vitro antigenic stimulation results in the significant increase of both primary and memory CD8 T cell population in mice after adoptive transfer of activated cells. The effect of IL-12 priming is closely associated with qualitative changes in CD8 T cells, such as reduced MHC I tetramer binding and CD69 expression, altered distribution of lipid rafts, decreased cytolytic activity, and less susceptibility to apoptosis. Furthermore, exogenous IL-12 priming improved the intrinsic survival properties of memory CD8 T cells, leading to better protective immunity and vaccine-induced memory CD8 T cell responses. However, the experiments with IL-12p40- and IL-12Rbeta1-deficient mice showed similar levels of primary and memory CD8 T cell responses compared with wild-type mice, implying that endogenous IL-12 and/or IL-12R signaling in vivo is not critical for CD8 T cell immunity. Together, our results suggest that IL-12 can serve as an important, but dispensable regulatory factor for the development of CD8 T cells, and IL-12 priming could be useful in many medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号