首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Haptoglobin (Hp), a conserved plasma glycoprotein, forms very stable soluble complexes with free plasma haemoglobin. Haemoglobin binding by haptoglobin is thought to be important in the rapid hepatic clearance of haemoglobin from the plasma and in the inhibition of glomerular filtration of haemoglobin. It is thought to reduce haemoglobin-induced renal damage during haemolysis. To evaluate these functions, Hp knockout (Hp-/-) mice were created. The Hp-/- mouse was generated by a standard gene replacement technique in mouse embryonic stem cells. These mice were evaluated with and without haemolysis using several parameters: mortality, haemoglobin clearance, renal tissue damage and function. Hp-/- mice were viable but had a small, significant reduction in postnatal viability. The lack of Hp did not impair clearance of free plasma haemoglobin. Induction of severe haemolysis by phenylhydrazine caused extensive haemoglobin precipitation in the renal tubular cells. However, haemoglobin precipitation in the kidney was not increased in Hp-/- mice. Nevertheless, Hp-/- mice were more susceptible to phenylhydrazine with a mortality rate of 55% in Hp-/- mice versus 18% in Hp+/+ mice. In general, phenylhydrazine-treated Hp-/- mice suffered greater tissue damage, as evidenced by the induction of a hepatic acute phase response, resulting in increased plasma alpha1-acidic glycoprotein (AGP) levels and higher plasma malonaldehyde (MDA) and 4-hydroxy-2(E)-nonenal (HNE) levels. Gross pathological analysis indicated that the kidney was the most affected tissue in phenylhydrazine-treated Hp-/- and Hp+/+ mice, and Hp-/- mice were more severely affected. They had lower mitotic indices in their kidneys, higher basal levels of renal lipid peroxidation, as evidenced by levels of malonaldehyde and 4-hydroxy-2(E)-nonenal (MDA/HNE) and elevated levels of 8-hydroxyguanine (but not other products of oxidative DNA damage). There also was increased induction of haem oxygenase-1. The more severe renal damage in Hp-/- mice was also evident in the delayed erythropoietin gene expression and poorer renal clearance of [3H]-inulin. The reduction in glomerular filtration function in Hp+/+ and Hp-/- mice could be restored to baseline by vasodilators (prazosin or diazoxide), implicating renal vasoconstriction as a major mechanism of acute renal failure during induced haemolysis. These data suggest that Hp plays a pivotal role in reducing renal oxidative damage during haemolysis.  相似文献   

2.
Abstract

Haptoglobin (Hp), a conserved plasma glycoprotein, forms very stable soluble complexes with free plasma haemoglobin. Haemoglobin binding by haptoglobin is thought to be important in the rapid hepatic clearance of haemoglobin from the plasma and in the inhibition of glomerular filtration of haemoglobin. It is thought to reduce haemoglobin-induced renal damage during haemolysis. To evaluate these functions, Hp knockout (Hp-/-) mice were created. The Hp-/- mouse was generated by a standard gene replacement technique in mouse embryonic stem cells. These mice were evaluated with and without haemolysis using several parameters: mortality, haemoglobin clearance, renal tissue damage and function.

Hp-/- mice were viable but had a small, significant reduction in postnatal viability. The lack of Hp did not impair clearance of free plasma haemoglobin. Induction of severe haemolysis by phenylhydrazine caused extensive haemoglobin precipitation in the renal tubular cells. However, haemoglobin precipitation in the kidney was not increased in Hp-/- mice. Nevertheless, Hp-/- mice were more susceptible to phenylhydrazine with a mortality rate of 55% in Hp-/- mice versus 18% in Hp+/+ mice. In general, phenylhydrazine-treated Hp-/- mice suffered greater tissue damage, as evidenced by the induction of a hepatic acute phase response, resulting in increased plasma1-acidic glycoprotein (AGP) levels and higher plasma malonaldehyde (MDA) and 4-hydroxy-2(E)-nonenal (HNE) levels. Gross pathological analysis indicated that the kidney was the most affected tissue in phenylhydrazine-treated Hp-/- and Hp+/+ mice, and Hp-/- mice were more severely affected. They had lower mitotic indices in their kidneys, higher basal levels of renal lipid peroxidation, as evidenced by levels of malonaldehyde and 4-hydroxy-2(E)-nonenal (MDA/HNE) and elevated levels of 8-hydroxyguanine (but not other products of oxidative DNA damage). There also was increased induction of haem oxygenase-1. The more severe renal damage in Hp-/- mice was also evident in the delayed erythropoietin gene expression and poorer renal clearance of [3H]-inulin. The reduction in glomerular filtration function in Hp +/+ and Hp-/- mice could be restored to baseline by vasodilators (prazosin or diazoxide), implicating renal vasoconstriction as a major mechanism of acute renal failure during induced haemolysis.

These data suggest that Hp plays a pivotal role in reducing renal oxidative damage during haemolysis.  相似文献   

3.
Red cells exposed to t-butyl hydroperoxide undergo lipid peroxidation, haemoglobin degradation and hexose monophosphate-shunt stimulation. By using the lipid-soluble antioxidant 2,6-di-t-butyl-p-cresol, the relative contributions of t-butyl hydroperoxide and membrane lipid hydroperoxides to oxidative haemoglobin changes and hexose monophosphate-shunt stimulation were determined. About 90% of the haemoglobin changes and all of the hexose monophosphate-shunt stimulation were caused by t-butyl hydroperoxide. The remainder of the haemoglobin changes appeared to be due to reactions between haemoglobin and lipid hydroperoxides generated during membrane peroxidation. After exposure of red cells to t-butyl hydroperoxide, no lipid hydroperoxides were detected iodimetrically, whether or not glucose was present in the incubation. Concentrations of 2,6-di-t-butyl-p-cresol, which almost totally suppressed lipid peroxidation, significantly inhibited haemoglobin binding to the membrane but had no significant effect on hexose monophosphate shunt stimulation, suggesting that lipid hydroperoxides had been decomposed by a reaction with haem or haem-protein and not enzymically via glutathione peroxidase. The mechanisms of lipid peroxidation and haemoglobin oxidation and the protective role of glucose were also investigated. In time-course studies of red cells containing oxyhaemoglobin, methaemoglobin or carbonmono-oxyhaemoglobin incubated without glucose and exposed to t-butyl hydroperoxide, haemoglobin oxidation paralleled both lipid peroxidation and t-butyl hydroperoxide consumption. Lipid peroxidation ceased when all t-butyl hydroperoxide was consumed, indicating that it was not autocatalytic and was driven by initiation events followed by rapid propagation and termination of chain reactions and rapid non-enzymic decomposition of lipid hydroperoxides. Carbonmono-oxyhaemoglobin and oxyhaemoglobin were good promoters of peroxidation, whereas methaemoglobin relatively spared the membrane from peroxidation. The protective influence of glucose metabolism on the time course of t-butyl hydroperoxide-induced changes was greatest in carbonmono-oxyhaemoglobin-containing red cells followed in order by oxyhaemoglobin- and methaemoglobin-containing red cells. This is the reverse order of the reactivity of the hydroperoxide with haemoglobin, which is greatest with methaemoglobin. In studies exposing red cells to a wide range of t-butyl hydroperoxide concentrations, haemoglobin oxidation and lipid peroxidation did not occur until the cellular glutathione had been oxidized. The amount of lipid peroxidation per increment in added t-butyl hydroperoxide was greatest in red cells containing carbonmono-oxyhaemoglobin, followed in order by oxyhaemoglobin and methaemoglobin. Red cells containing oxyhaemoglobin and carbonmono-oxyhaemoglobin and exposed to increasing concentrations of t-butyl hydroperoxide became increasingly resistant to lipid peroxidation as methaemoglobin accumulated, supporting a relatively protective role for methaemoglobin. In the presence of glucose, higher levels of t-butyl hydroperoxide were required to induce lipid peroxidation and haemoglobin oxidation compared with incubations without glucose. Carbonmono-oxyhaemoglobin-containing red cells exposed to the highest levels of t-butyl hydroperoxide underwent haemolysis after a critical level of lipid peroxidation was reached. Inhibition of lipid peroxidation by 2,6-di-t-butyl-p-cresol below this critical level prevented haemolysis. Oxidative membrane damage appeared to be a more important determinant of haemolysis in vitro than haemoglobin degradation. The effects of various antioxidants and free-radical scavengers on lipid peroxidation in red cells or in ghosts plus methaemoglobin exposed to t-butyl hydroperoxide suggested that red-cell haemoglobin decomposed the hydroperoxide by a homolytic scission mechanism to t-butoxyl radicals.  相似文献   

4.
Antioxidant phytochemicals are investigated as novel treatments for supportive therapy in β-thalassemia. The dietary indicaxanthin was assessed for its protective effects on human β-thalassemic RBCs submitted in vitro to oxidative haemolysis by cumene hydroperoxide. Indicaxanthin at 1.0-10 μM enhanced the resistance to haemolysis dose-dependently. In addition, it prevented lipid and haemoglobin (Hb) oxidation, and retarded vitamin E and GSH depletion. After ex vivo spiking of blood from thalassemia patients with indicaxanthin, the phytochemical was recovered in the soluble cell compartment of the RBCs. A spectrophotometric study showed that indicaxanthin can reduce perferryl-Hb generated in solution from met-Hb and hydrogen peroxide (H2O2), more effectively than either Trolox or vitamin C.

Collectively our results demonstrate that indicaxanthin can be incorporated into the redox machinery of β-thalassemic RBC and defend the cell from oxidation, possibly interfering with perferryl-Hb, a reactive intermediate in the hydroperoxide-dependent Hb degradation. Opportunities of therapeutic interest for β-thalassemia may be considered.  相似文献   

5.
We previously showed that RPE65 does not specifically produce 11-cis-retinol only but also 13-cis-retinol, supporting a carbocation or radical cation mechanism of isomerization. The intrinsic properties of conjugated polyene chains result in facile formation of radical cations in oxidative conditions. We hypothesized that such radical intermediates, if involved in the mechanism of RPE65, could be stabilized by spin traps. We tested a variety of hydrophilic and lipophilic spin traps for their ability to inhibit RPE65 isomerohydrolase activity. We found that the aromatic lipophilic spin traps such as N-tert-butyl-α-phenylnitrone (PBN), 2,2-dimethyl-4-phenyl-2H-imidazole-1-oxide (DMPIO), and nitrosobenzene (NB) strongly inhibit RPE65 isomerohydrolase activity in vitro.  相似文献   

6.
Antioxidant phytochemicals are investigated as novel treatments for supportive therapy in β-thalassemia. The dietary indicaxanthin was assessed for its protective effects on human β-thalassemic RBCs submitted in vitro to oxidative haemolysis by cumene hydroperoxide. Indicaxanthin at 1.0–10 μM enhanced the resistance to haemolysis dose-dependently. In addition, it prevented lipid and haemoglobin (Hb) oxidation, and retarded vitamin E and GSH depletion. After ex vivo spiking of blood from thalassemia patients with indicaxanthin, the phytochemical was recovered in the soluble cell compartment of the RBCs. A spectrophotometric study showed that indicaxanthin can reduce perferryl-Hb generated in solution from met-Hb and hydrogen peroxide (H2O2), more effectively than either Trolox or vitamin C.

Collectively our results demonstrate that indicaxanthin can be incorporated into the redox machinery of β-thalassemic RBC and defend the cell from oxidation, possibly interfering with perferryl-Hb, a reactive intermediate in the hydroperoxide-dependent Hb degradation. Opportunities of therapeutic interest for β-thalassemia may be considered.  相似文献   

7.
R D Harcourt 《Biopolymers》1972,11(8):1551-1565
Valence formulas are constructed for the iron–ligand groups of the oxy-, carboxy-, nitric oxide-, and nitrosobenzene derivatives of haemoglobin. To do this, the newly developed “increased-valence” theory3 is used. The most stable of these valence formulae are able to account simply for certain iron-ligand properties, with the iron remaining essentially as ferrous, as it is in haemoglobin.  相似文献   

8.
The reducing effect of ascorbic acid and of borohydride upon ferrihaemoglobin present in native and chemically modified human and bovine stroma-free hemoglobins was investigated. Ferrihaemoglobin which had been freshly prepared from oxyhaemoglobin by treatment with potassium ferricyanate was fully reduced to ferrohaemoglobin. Full reduction of ferrihaemoglobin, however, could not be achieved with those haemoglobin samples which had a partially deteriorated conformation due to long time storage or chemical modification.  相似文献   

9.
A revised procedure is described for deriving enthalpy-entropy relations in the haemolysis kinetics of mammalian erythrocytes and its application demonstrates that previously reported linear enthalpy-entropy correlations are statistical artefacts with no real physical basis.Physically valid linear enthalpy-entropy relations do exist between species at constant osmotic concentration, but these are the result of the mutual dependence of the activation parameters on erythrocyte solvent volume. Non-linear enthalpy-entropy dependence on osmotic concentration, which is also physically valid and occurs within species, is attributed to erythrocyte solvent volume variation due to the osmotic properties of haemoglobin.Further development of the data indicates that malonamide-induced haemolysis is essentially an osmotic phenomenon and that the water permeability of all those cells is probably the same.From a consideration of the process in relation to the molecular dynamics of water it appears that the activation enthalpy, entropy and internal energy of haemolysis may refer to the molecular mobility of water during osmosis.  相似文献   

10.
Abstract

Background

It has been demonstrated that oxidative stress can induce red blood cell rigidity and haemolysis, which in turn can cause hyperviscosity and hyperbilirubinaemia, respectively. However, haemolysis may be associated with a low level of haemoglobin, which reduces whole blood viscosity (WBV). Bilirubin can behave as antioxidant or oxidant, and one uncharted course for diagnostic pathology is how or whether bilirubinaemia and viscosity are associated. Further, oxidative stress is now being assessed using lipoprotein-a (Lp(a)), among other things but whether it is associated with blood viscosity has not been established.

Aim

This study investigates the association and correlation of haemoglobin level and WBV with serum Lp(a) and bilirubin levels in a general population of patients.

Materials and methods

Sixty-eight cases that were tested for Lp(a), concomitantly with full blood count and liver function, in our archived clinical pathology database were used in this study. WBV levels were determined using a validated formula. Multivariate and univariate analyses as well as correlation were performed.

Results

WBV was found to be significantly associated with bilirubin (P < 0.02), but not with Lp(a). Haemoglobin concentration was inversely correlated with Lp(a) (P < 0.04), but not with bilirubinaemia.

Conclusion

This pilot study suggests that hyperbilirubinaemia and hyperviscosity are associated and positively correlated. Consideration of whether serum bilirubin (as an indirect index of oxidative stress) can be used in combination with WBV (as index of macrovascular effect of oxidative stress) to assess oxidative damage is recommended.  相似文献   

11.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

12.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

13.
Discovery of haemoglobin A expression outside of the erythroid cell lineage suggests that oxygen transport is the main, but not the unique, function of adult haemoglobin chains in mammals. The contribution of haemoglobin A to antioxidant defences has been proposed in the territories where it is expressed. Catecholaminergic cells rely on an active oxidative metabolism to accomplish their biological function, but are exposed to strong oxidative stress due to metabolism of catecholaminergic transmitters. We show in the present study that peripheral catecholaminegic cells express the α- and not the β-haemoglobin A chains, and that α-haemoglobin expression could modulate the antioxidant capabilities of these cells. We also show that α-haemoglobin overexpression in PC12 cells leads to a selective increase of tyrosine hydroxylase synthesis and activity. This is achieved by means of a reorganization of antioxidant defences, decreasing cytoplasmic glutathione peroxidase and superoxide dismutase, and increasing mitochondrial peroxidase. Moreover, α-haemoglobin induces a decrease in lipogenesis and increase in lipid degradation, situations that help save NAD(P)H and favour supply of acetyl-CoA to the tricarboxylic acid cycle and production of reducing equivalents in the cell. All of these results point to a role for α-haemoglobin as a regulator of catecholaminergic cell metabolism required for phenotype acquisition and maintenance.  相似文献   

14.
This study aimed to determine the effect of haemolysis on plasma oxidation and nitration in sickle cell disease (SCD) patients. Blood was collected from haemoglobin (Hb)A volunteers and homozygous HbSS patients who had not received blood transfusions in the last 3 months. Haemolysis was characterised by low levels of haemoglobin and haptoglobin and high levels of reticulocyte, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), plasma cell-free haemoglobin, bilirubin, total lactate dehydrogenase (LDH) and dominance of LDH-1 isoenzyme. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were measured to evaluate oxidised lipids, oxidised and nitrated proteins, respectively. Plasma nitrite-nitrate levels were also determined to assess nitric oxide (NO) production in both SCD patients and controls. Markers of haemolysis were significantly evident in SCD patients compared to controls. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were markedly elevated in SCD patients compared to controls. Linear regression analysis revealed a significant inverse correlation between haemoglobin and reticulocyte counts and a significant positive correlation of plasma cell-free haemoglobin with protein carbonyl and nitrotyrosine levels. The obtained data shows that increased haemolysis in SCD increases plasma protein oxidation and nitration.  相似文献   

15.
Haptoglobin (Hp) has been known to be associated with the host defence response to infection and inflammation. The biological functions of Hp can be related to its ability to bind haemoglobin or to modulate immune response. Hp is expressed at a high level in lung cells, yet its protective role(s) in the lung is not known. Using transgenic mice overexpressing Hp, we demonstrated that Hp can reduce blood-induced lung injury. Hp-mediated haemoglobin catabolism in lung cells appears to be linked to iron mobilization, and may be an efficient mechanism to reduce oxidative damage associated with haemolysis.  相似文献   

16.
A comparison of haemoglobin, 2,4-dinitrophenyl and N,O-dibenzyloxycarbonyltyrosineas ligands for the affinity chromatography of wheat-leaf proteinasesdelete widi acid pH optima, established that haemoglobin wasthe most satisfactory. Using haemoglo-bin-Sepharose 4B affinitychromatography it was possible to purify wheat-leaf acid proteinases,previously isolated on DEAE-cellulose, to homogeneity as judgedby polyacrylamide gel electrophoresis. Some properties of threepurified proteinases are presented and discussed. (Received January 17, 1978; )  相似文献   

17.
Oxidative degradation of bilirubin produces vasoactive compounds.   总被引:5,自引:0,他引:5  
Subarachnoid haemorrhage is often followed by haemolysis and concomitant oxidative stress, and is frequently complicated by pathological vasoconstriction or cerebral vasospasm. It is known that upregulation of haem oxygenase (HO-1) is induced by oxidative stress and results in release of biliverdin and bilirubin (BR), which are scavengers of reactive oxygen species (ROS). Here we report biomimetic studies aimed at modelling pathological conditions leading to oxidative degradation of BR. Oxidative degradation products of BR, formed by reaction with hydrogen peroxide (an ROS model system), demonstrated biological activity by stimulating oxygen consumption and force development in vascular smooth muscle from porcine carotid artery. Analogous biological activity was observed with vasoactive cerebrospinal fluid from subarachnoid haemorrhage patients. Three degradation products of BR were isolated: two were assigned as isomeric monopyrrole (C9H11N2O2) derivatives, 4-methyl-5-oxo-3-vinyl-(1, 5-dihydropyrrol-2-ylidene)acetamide and 3-methyl-5-oxo-4-vinyl-(1, 5-dihydropyrrol-2-ylidene)acetamide and the third was 4-methyl-3-vinylmaleimide (MVM), a previously isolated photodegradation product of biliverdin. Possible mechanisms of oxidative degradation of BR are discussed. Tentative assignment of these structures in the cerebrospinal fluid (CSF) of cerebral vasospasm patients has been made. It is proposed that one or more of the degradation products of biliverdin or bilirubin are involved in complications such as vasospasm and or pathological vasoconstriction associated with haemorrhage.  相似文献   

18.
《Free radical research》2013,47(7):883-890
Abstract

This study aimed to determine the effect of haemolysis on plasma oxidation and nitration in sickle cell disease (SCD) patients. Blood was collected from haemoglobin (Hb)A volunteers and homozygous HbSS patients who had not received blood transfusions in the last 3 months. Haemolysis was characterised by low levels of haemoglobin and haptoglobin and high levels of reticulocyte, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), plasma cell-free haemoglobin, bilirubin, total lactate dehydrogenase (LDH) and dominance of LDH-1 isoenzyme. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were measured to evaluate oxidised lipids, oxidised and nitrated proteins, respectively. Plasma nitrite–nitrate levels were also determined to assess nitric oxide (NO) production in both SCD patients and controls. Markers of haemolysis were significantly evident in SCD patients compared to controls. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were markedly elevated in SCD patients compared to controls. Linear regression analysis revealed a significant inverse correlation between haemoglobin and reticulocyte counts and a significant positive correlation of plasma cell-free haemoglobin with protein carbonyl and nitrotyrosine levels. The obtained data shows that increased haemolysis in SCD increases plasma protein oxidation and nitration.  相似文献   

19.
Human erythrocytes were incubated in haemolytic salt or sucrose media and the amount of potassium and haemoglobin released were monitored. In hypotonic NaCl and KCl solutions potassium release and haemolysis increased with time showing that the cell membrane had been injured and became permeable to intra- and extracellular cations which, due to intracellular haemoglobin, causes water influx and continuous haemolysis. Both potassium release and haemolysis remained, however, at their 2-minute level in the presence of LPC. Thus, LPC could reseal the membrane and prevent continuous salt fluxes. It protected erythrocytes from hypotonic haemolysis and the protection was more efficient in NaCl than in sucrose media. This suggests that the increase in the critical volume of erythrocytes caused by LPC occurs both in electrolyte and sucrose media, and the additional protection observed in electrolyte media is due to the resealing of the injured cell membrane by LPC. The repairing mechanism was mediated via the membrane lipids or integral proteins, since the time-course of haemolysis of erythrocytes swollen in NaCl media at the spectrin-denaturing temperature of 49.5 degrees C was similar to that at room temperature with and without LPC. LPC did not protect erythrocytes from colloid osmotic haemolysis caused by ammonia influx in an isotonic NH4Cl medium, but protected the cells from colloid osmotic haemolysis caused by sodium influx through nystatin-channels in NaCl media without any area or volume increase. Hence, LPC could not prevent ammonia influx through the lipid bilayer, but suppressed sodium influx through nystatin-channels presumably via LPC interference with cholesterol.  相似文献   

20.
Palytoxin causes within minutes a temperature-dependent K+ loss from human and rat erythrocytes which is followed within hours by haemolysis. It decreases the osmotic resistance in a concentration-dependent manner, so that osmotic influences are negligible for K+ release but considerable in haemolysis. External K+ inhibits the haemoglobin release and Rb+ inhibits the release of K+ and haemoglobin. Ca2+ (over 20 microM) and borate (over 5 microM) enhance the loss of K+ and haemoglobin. With both Ca2+ and borate present, the efficacy of palytoxin is raised about 10 000-fold. Under these conditions, about 15 palytoxin molecules per human cell trigger a 50% K+ loss over a wide range of cell concentrations. The palytoxin effect is reversible. After depletion from K+ by low concentrations of palytoxin, human cells can be refilled with K+ and resealed. The pores formed by palytoxin are small. They allow the entrance of Na+ and choline, whereas inositol is largely excluded and Ca2+, as well as sucrose and inulin, are completely excluded. Amphotericin B resembles palytoxin in its ability to cause a considerable prelytic K+ loss and to form small pores. However, it is about 1000-times weaker than palytoxin, is not inhibited by K+ or Rb+, is not activated by Ca2+ or borate, and has a negative temperature dependence. Thus palytoxin represents a novel type of cytolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号