首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synucleins are a family of proteins involved in numerous neurodegenerative pathologies [α-synuclein and β-synuclein (βS)], as well as in various types of cancers [γ-synuclein (γS)]. While the connection between α-synuclein and Parkinson's disease is well established, recent evidence links point mutants of βS to dementia with Lewy bodies. Overexpression of γS has been associated with enhanced metastasis and cancer drug resistance. Despite their prevalence in such a variety of diseases, the native functions of the synucleins remain unclear. They have a lipid-binding motif in their N-terminal region, which suggests interactions with biological membranes in vivo. In this study, we used fluorescence correlation spectroscopy to monitor the binding properties of βS and γS to model membranes and to determine the free energy of the interactions. Our results show that the interactions are most strongly affected by the presence of both anionic lipids and bilayer curvature, while membrane fluidity plays a very minor role. Quantifying the lipid-binding properties of βS and γS provides additional insights into the underlying factors governing the protein-membrane interactions. Such insights not only are relevant to the native functions of these proteins but also highlight their contributions to pathological conditions that are either mediated or characterized by perturbations of these interactions.  相似文献   

2.
Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during brain activation. Furthermore, glutamate uptake into cultured astrocytes stimulates glutamate oxidation and oxygen consumption, and glutamate maintains respiration as well as glucose. The neurotransmitter pool of glutamate is associated with the faster component of total glutamate turnover in vivo, and use of neurotransmitter glutamate to fuel its own uptake by oxidation-competent perisynaptic processes has two advantages, substrate is supplied concomitant with demand, and glutamate spares glucose for use by neurons and astrocytes. Some, but not all, perisynaptic processes of astrocytes in adult rodent brain contain mitochondria, and oxidation of only a small fraction of the neurotransmitter glutamate taken up into these structures would be sufficient to supply the ATP required for sodium extrusion and conversion of glutamate to glutamine. Glycolysis would, however, be required in perisynaptic processes lacking oxidative capacity. Three lines of evidence indicate that critical cornerstones of the astrocyte-to-neuron lactate shuttle model are not established and normal brain does not need lactate as supplemental fuel: (i) rapid onset of hemodynamic responses to activation delivers oxygen and glucose in excess of demand, (ii) total glucose utilization greatly exceeds glucose oxidation in awake rodents during activation, indicating that the lactate generated is released, not locally oxidized, and (iii) glutamate-induced glycolysis is not a robust phenotype of all astrocyte cultures. Various metabolic pathways, including glutamate oxidation and glycolysis with lactate release, contribute to cellular energy demands of excitatory neurotransmission.  相似文献   

3.
A chemically defined medium was devised to examine the growth, production and biochemical pathway of tetrocarcin A. The production of tetrocarcin A was greatly stimulated by l-feucine and its corresponding keto acid, α-ketoisocaproate, suggesting that l-leucine is involved in the biosynthesis of tetrocarcin A. About 10–12 μg/ml of tetrocarcin A was produced in a chemically defined medium consisting of 20 g sucrose, 2.5 g KNO3, 5 g MgSO4·7H2O, 5 g KH2PO4 and 1 g l-leucine per liter of water (pH 7.0).  相似文献   

4.
β‐Lactoglobulin (β‐LG) is a lipocalin, which is the major whey protein of cow's milk and the milk of other mammals. However, it is absent from human milk. The biological function of β‐LG is not clear, but its potential role in carrying fatty acids through the digestive tract has been suggested. β‐LG has been found in complexes with lipids such as butyric and oleic acids and has a high affinity for a wide variety of compounds. Serotonin (5‐hydroxytryptamine, 5‐HT), an important compound found in animals and plants, has various functions, including the regulation of mood, appetite, sleep, muscle contraction, and some cognitive functions such as memory and learning. In this study, the interaction of serotonin and one of its derivatives, arachidonyl serotonin (AA‐5HT), with β‐LG was investigated using circular dichroism (CD) and fluorescence intensity measurements. These two ligands interact with β‐LG forming equimolar complexes. The binding constant for the serotonin/β‐LG interaction is between 105 and 106 M−1, whereas for the AA‐5HT/β‐LG complex it is between 104 and 105 M−1 as determined by measurements of either protein or ligand fluorescence. The observed binding affinities were higher in hydroethanolic media (25% EtOH). The interactions between serotonin/β‐LG and AA‐5HT/β‐LG may compete with self‐association (micellization) of both the ligand and the protein. According to far‐ and near‐UV CD results, these ligands have no apparent influence on β‐LG secondary structure, however they partially destabilize its tertiary structure. Their binding by β‐LG may be one of the peripheral mechanisms of the regulation of the content of serotonin and its derivatives in the bowel of milk‐fed animals. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 871–880, 2011.  相似文献   

5.

Background

Smoking has recently been suggested to synergistically interact with alcohol intake as a determinant of serum gamma-glutamyltransferase (γ-GT), an emergent powerful predictor of disease and mortality. This study investigated whether this also applies to higher smoking and alcohol exposure ranges and to body mass index (BMI), which likewise is strongly associated with γ-GT.

Methodology/Principal Findings

Analyses were based on occupational health examinations of more than 15,000 German male workers aged 16–64 years, predominantly from the construction industry. Sociodemographics and other health-related information were collected during the exam. Joint associations of smoking and alcohol consumption or BMI with elevated or log-transformed γ-GT were examined by tabulation and multiple adjusted regression models. Cigarette smoking exerted no effect on γ-GT in teetotalers, but there was a statistically significant effect of smoking among participants with higher alcohol consumption intensity, odds of elevated γ-GT being increased by 24% and 27% per additional 10 cigarettes smoked per day in subjects drinking 61–90 and >90 gram alcohol per day, respectively (P for interaction = 0.039). The interaction was opposite for BMI, where no association was seen in obese subjects, whereas odds of elevated γ-GT were increased by 24% per 10 cigarettes below 25 kg/m2 (P for interaction = 0.040). This novel interaction was replicable in an independent cohort.

Conclusion

The evidence for opposite interactions of smoking with alcohol and BMI as determinants of serum γ-GT suggests that different physiological pathways are responsible for the associations between these factors.  相似文献   

6.
Hydration is a key determinant of the folding, dynamics, and function of proteins. In this study, temperature-dependent Fourier transform infrared (FTIR) spectroscopy combined with singular value decomposition (SVD) and global fitting were used to investigate both the interaction of water with α-helical proteins and the cooperative thermal unfolding of these proteins. This methodology has been applied to an isolated α-helix (Fs peptide) and to globular α-helical proteins including the helical subdomain and full-length villin headpiece (HP36 and HP67). The results suggest a unique IR signature for the interaction of water with the helical amide carbonyl groups of the peptide backbone. The IR spectra indicate a weakening of the net hydrogen bond strength of water to the backbone carbonyls with increasing temperature. This weakening of the backbone solvation occurs as a discrete transition near the maximum of the temperature-dependent hydrophobic effect, not a continuous change with increasing temperature. Possible molecular origins of this effect are discussed with respect to previous molecular dynamics simulations of the temperature-dependent solvation of the helix backbone.  相似文献   

7.
The development of small molecules to stabilize the G-quadruplex structure has garnered significant attention for anticancer drug discovery. Herein, we report the synthesis of several 4,4′-diaminoazobenzene derivatives containing different substituent groups and their ability to bind and stabilize telomeric G-quadruplex DNA. Circular dichroism (CD) spectroscopy was performed to characterize the quadruplex topologies, measure stabilization effects, and evaluate their capabilities for conformational photoregulation. 4,4′-Diaminoazobenzene derivatives were found to moderately stabilize quadruplex structures but not affect conformational photoregulation. This work further develops the design and general understanding of the stabilization effects of small molecules with telomeric G-quadruplex DNA.  相似文献   

8.
The amino acids of the B-chains of two abrins (designated as abrin-a and abrin-b) from the seeds of Abrus precatorius have been sequenced. The sequence of the B-chain of abrin-a was solved by analysis of peptides derived by enzymatic digestions with trypsin, Iysylendopeptidase, and chymotrypsin, as well as by chemical cleavage with cyanogen bromide. The sequence of the B-chain of abrin-b was analyzed by sequence analysis of tryptic peptides and comparing these sequences with those of corresponding peptides of the B-chain of abrin-a. The B-chains of abrin-a and abrin-b consist of 268 amino acid residues and share 256 identical residues. Comparison of their sequences with that of the ricin B-chain shows that 60% of the residues of both abrin B-chains are identical to those of the ricin B-chain and that two saccharide-binding sites in ricin B-chain identified by a crystallographic study are highly conserved in both abrin B-chains.  相似文献   

9.
Adverse side effects of drugs are often caused by the interaction of drug molecules to targets other than the intended ones. In this study, we investigated the off-target interactions of some commercially available drugs with human α-thrombin. The drugs used in the study were selected from Super Drug Database based on the structural similarity to a known thrombin inhibitor argatroban. Interactions of these drugs with thrombin were initially checked by in silico docking studies and then confirmed by thrombin inhibition assay using a fluorescence microplate-based method. Results show that the three commonly used drugs piperacillin (anti-bacterial), azlocillin (anti-bacterial), and metolazone (anti-hypertensive and diuretic) have thrombin inhibitory activity almost similar to that of argatroban. The Ki values of piperacillin, azlocillin, and metolazone with thrombin are .55, .95, and .62?nM, respectively. The IC50 values of piperacillin, azlocillin, and metolazone with thrombin are 1.7, 2.9, and 1.92?nM, respectively. This thrombin inhibitory activity might be a reason for the observed side effects of these drugs related to blood coagulation and other thrombin activities. Furthermore, these compounds (drugs) may be used as anti-coagulants as such or with structural modifications.  相似文献   

10.
(?)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.  相似文献   

11.
Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD. In addition to processing APP, γ-secretase also catalyzes proteolytic cleavage of other transmembrane substrates, with the best characterized one being the cell surface receptor Notch. GSIs reduce Aβ production in animals and humans but also cause significant side effects because of the inhibition of Notch processing. The development of GSIs that reduce Aβ production and have less Notch-mediated side effect liability is therefore an important goal. γ-Secretase is a large membrane protein complex with four components, two of which have multiple isoforms: presenilin (PS1 or PS2), aph-1 (aph-1a or aph-1b), nicastrin, and pen-2. Here we describe the reconstitution of four γ-secretase complexes in Sf9 cells containing PS1--aph-1a, PS1--aph-1b, PS2--aph-1a, and PS2--aph-1b complexes. While PS1--aph-1a, PS1--aph-1b, and PS2--aph-1a complexes displayed robust γ-secretase activity, the reconstituted PS2--aph-1b complex was devoid of detectable γ-secretase activity. γ-Secretase complexes containing PS1 produced a higher proportion of the toxic species Aβ42 than γ-secretase complexes containing PS2. Using the reconstitution system, we identified MRK-560 and SCH 1500022 as highly selective inhibitors of PS1 γ-secretase activity. These findings may provide important insights into developing a new generation of γ-secretase inhibitors with improved side effect profiles.  相似文献   

12.
We have developed a genetic circuit in Escherichia coli that can be used to select for protein–protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein–protein interaction strength to β-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for β-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein–protein interactions. We show that the circuit can be used to recover protein–protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein–protein interactions of defined strength.  相似文献   

13.
Alkylphosphocholines (APCs) belong to a class of synthetic antitumor lipids, which are new-generation anticancer agents. In contrast to traditional antitumor drugs, they do not attack the cell nucleus but, rather, the cellular membrane; however, their mechanism of action is not fully understood. This work compared the interactions of selected APCs [namely, hexadecylphosphocholine (miltefosine), octadecylphosphocholine and erucylphosphocholine] with the most important membrane lipids [cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] and examined their influence on a model membrane of tumor and normal cells. As a simple model of membranes, Langmuir monolayers prepared by mixing cholesterol either with a saturated phosphatidylcholine (DPPC), for a normal cell membrane, or with an unsaturated one (POPC), for a tumor cell membrane, have been applied. The APC–lipid interactions, based on experimental surface pressure (π) versus mean molecular area (A) isotherms, were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with the ΔG exc function). Strong attractive interactions were observed for mixtures of APCs with cholesterol, contrary to the investigated phosphatidylcholines, for which the interactions were found to be weak with a tendency to separation of film components. In ternary monolayers it has been found that the investigated model systems (cholesterol/DPPC/APC vs cholesterol/POPC/APC) differ significantly as regards the interactions between film-forming molecules. The results demonstrate stronger interactions between the components of cholesterol/POPC/APC monolayers compared to cholesterol/POPC film, mimicking tumor cell membranes. In contrast, the interactions in cholesterol/DPPC/APC films were found to be weaker than those in the cholesterol/DPPC system, serving as a model of healthy cell membranes, thus proving that the incorporation of APCs is, from a thermodynamic point of view, unfavorable for binary cholesterol/DPPC monolayers. It can be concluded that the composition of healthy cell membranes is a natural barrier preventing the incorporation of APCs into normal cells.  相似文献   

14.
This article reviews recent advances in the understanding of mast cell-nervous system interactions. It is drawn largely from work published within the last ten years, and discusses the anatomical and biochemical evidence of a functional connection between mast cells and the nervous system, and the implications that such a relationship may have for normal and abnormal physiological functioning. Mast cells are found at varying levels of association with the nervous system; in CNS parenchyma (mainly thalamus), in connective tissue coverings (e.g. meninges, endonerium), and in close apposition to peripheral nerve endings in a variety of tissues. There is, as yet, no clearly defined role for mast cells in nervous system function, or vice-versa, and it seems most likely that their interactions fulfil mutually modulatory roles. By extension, pathological situations where one of the partners in this relationship is overly stimulated may lead to a dysregulation of the other, and contribute to disease symptomatology.Abbreviations ACh acetylcholine - BMMC bone marrow-derived mast cells - CGRP calcitonin gene-related peptide - EAE experimental allergic encephalomyelitis - EAN experimental allergic neuritis - 5-HT serotonin - IgE immunoglobulin E - IL-3 interleukin-3 - MS multiple sclerosis - NA noradrenaline - NF neurofibromatosis - NGF nerve growth factor - VIP Vasoactive intestinal polypeptide Special issue dedicated to Dr. Alan N. Davison.  相似文献   

15.

Background  

Several γ-secretase inhibitors (GSI) are in clinical trials for the treatment of Alzheimer's disease (AD). This enzyme mediates the proteolytic cleavage of amyloid precursor protein (APP) to generate amyloid β protein, Aβ, the pathogenic protein in AD. The γ-secretase also cleaves Notch to generate Notch Intracellular domain (NICD), the signaling molecule that is implicated in tumorigenesis.  相似文献   

16.
In order to investigate the catalytic mechanism of Escherichia coli γ-glutamyltranspeptidase, ten para- and meta-substituted γ-glutamyl anilides were chemically prepared and employed as substrates to synthesize L-theanine to assay the activity of γ-glutamyltranspeptidase. The reaction was optimized for γ-glutamyl-p-nitroanilide. Key factors such as substrate specificity, pH, temperature, and the substrate mole ratio were all investigated. Kinetic studies of the acyl transfer reaction were described and the Hammett plot was constructed. This study indicated that the ratelimiting acylation reaction of γ-glutamyltranspeptidase can apparently be accelerated by either the electron-withdrawing or electron-donating substituents of γ-glutamyl anilides. The reaction could be catalyzed by the general acid and carboxy of Asp-433 or phenolic hydroxyl Tyr-444 may be the acid by autodock simulation for all prepared γ-glutamyl anilides.  相似文献   

17.
Elena Karnaukhova 《Amino acids》2010,38(4):1011-1020
Human α1–proteinase inhibitor (α1–PI), also known as α1-antitrypsin, is the most abundant plasma serine protease inhibitor (serpin). It is best recognized for inhibition of neutrophil elastase. The α1–PI interactions with non-protease ligands were investigated mainly in regards to those molecules that may block the aggregation of α1–PI Z mutant. The objective of this study was to evaluate the potential of α1–PI to bind small non-peptide ligands of pharmaceutical interest that may attain additional properties to currently available α1–PI therapeutic preparations. Among putative ligands of bio-medical interest examined in this study, all-trans retinoic acid (RA) was selected due to its recently proposed roles in the lungs, and as an efficient optical probe. The results of this study, including absorption spectroscopy data, fluorescence quenching and the protein-induced chirality of the visible circular dichroism strongly suggest that α1–PI does bind RA in vitro to non-covalent complexes of up to two moles of RA per one mole of the protein. To our knowledge, this is the first report that provides experimental evidence of the α1–PI potential towards bi-functional drugs via a combination with RA, or potentially other molecules of pharmaceutical interest, that ultimately, may enhance currently available α1–PI therapies.  相似文献   

18.
19.
The interaction of the synthetic antimicrobial peptide P5 (KWKKLLKKPLLKKLLKKL-NH2) with model phospholipid membranes was studied using solid-state NMR and circular dichroism (CD) spectroscopy. P5 peptide had little secondary structure in buffer, but addition of large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) increased the β-sheet content to ~20%. Addition of negatively charged LUV, DMPC–dimyristoylphosphatidylglycerol (DMPG) 2:1, led to a substantial (~40%) increase of the α-helical conformation. The peptide structure did not change significantly above and below the phospholipid phase transition temperature. P5 peptide interacted differently with DMPC bilayers with deuterated acyl chains (d54-DMPC) and mixed d54-DMPC–DMPG bilayers, used to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC vesicles, P5 peptide had no significant interaction apart from slightly perturbing the upper region of the lipid acyl chain with minimum effect at the terminal methyl groups. By contrast, in the DMPC–DMPG vesicles the peptide increased disorder throughout the entire acyl chain of DMPC in the mixed bilayer. P5 promoted disordering of the headgroup of neutral membranes, observed by 31P NMR. However, no perturbations in the T 1 relaxation nor the T 2- values were observed at 30°C, although a slight change in the dynamics of the headgroup at 20°C was noticeable compared with peptide-free vesicles. However, the P5 peptide caused similar perturbations of the headgroup of negatively charged vesicles at both temperatures. These data correlate with the non-haemolytic activity of the P5 peptide against red blood cells (neutral membranes) while inhibiting bacterial growth (negatively charged membranes).  相似文献   

20.
Absorption and fluorescence spectra for six new synthetic dyes of 4,8,4′-trimethylpsoralen and 4,4′-dimethylangelicin derivatives containing various terminal substituents at 5′-position have been investigated in different environments using a wide range of the DNA/ligand concentrations. Various spectral and binding characteristics of the DNA-ligand systems have been determined. General principles characterizing mechanisms responsible for changes in the fluorescent properties of nucleotide-specific dyes have been proposed; they take into consideration chemical structure of the dyes, properties of the environment, and degree of sorption on substrate.__________Translated from Biokhimiya, Vol. 70, No. 7, 2005, pp. 995–1007.Original Russian Text Copyright © 2005 by Sibirtsev, Tolmachev, Kovaleva, Garabadzhiu, Traven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号