首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The localization of avidin in the oviduct of the laying hen was investigated using ultrastructural immunoperoxidase techniques. Endogenous avidin was localized in secretory granules of both tubular gland cells and non-ciliated single epithelial cells in the magnum mucosa. These immunospecific granules were electron-dense and heterogeneous with a patchy core and dense peripheral region, especially in acinar cells. The size varied from small to large in the gland cells (500–2200 nm in diameter) and remained small in the epithelial cells (180–720 nm). Columnar epithelial cells containing avidin granules strongly resembled the protodifferentiated tubular gland cells appearing in the magnum mucosa of chicks artificially pretreated with ovarian hormones. On the other hand, no avidin was observed in either epithelial goblet cells or ciliated cells in adult hens, although both cell types were shown to produce avidin in young chicks when synchronized by the administration of progesterone. The present results parallel those obtained with biotinylated enzyme affinity methods in our previous cytochemical study.Therefore, avidin is one of the proteins produced and stored in the secretory granules of the tubular gland cells and protodifferentiated acinar cells present in the epithelial layer of the laying hen oviduct. It is not present in goblet cells. Although the initiation of a synthesis may be triggered by progesterone, it is still not clear whether different hormone dependent proteins are localized in the same granules in both the adult hen and the immature chick.  相似文献   

2.
The localization of progesterone receptor (PR) in the quail oviduct was investigated before and after the onset of sexual maturation using an immunohistochemical technique. PR was revealed exclusively in nuclei of target cells whatever the hormonal state of the tissue (immature or not, pretreated or not with progesterone). In the immature or ovariectomized quail oviduct, PR was principally localized in the undifferentiated epithelial cells; some mesothelial cells and a very few stromal cells expressed the PR. Only 40-45% of the epithelial cells were immunoreactive. These positive cells were mainly localized in the furrows of the villi where further evagination of the epithelium will occur to form the tubular glands. The onset of sexual maturation was accompanied by an increase of the proportion of positive epithelial cells and stromal cells. In estradiol-treated animals, more than 90% of the tubular gland cells were strongly stained while only 40% of the luminal epithelial cells were immunoreactive. Our results show that there are two subpopulations of epithelial cells: those expressing the PR before the onset of sexual maturation even in ovariectomized quails (constitutive expression) and those expressing the PR during sexual maturation or after estrogen injection (inductive expression). These results, associated with previously published studies dealing with the cytodifferentiation of epithelial cells during natural development or after various hormonal treatments in ovariectomized animals, suggest that the first are the progenitors of tubular gland cells, and the second the progenitors of ciliated and goblet cells. In stromal cells, PR expression is also inducuible.  相似文献   

3.
4.
Administration of estrogen (E) to immature chicks triggers the cytodifferentiation of tubular gland cells in the magnum portion of the oviduct epithelium; these cells synthesize the major egg-white protein, ovalbumin. Electron microscopy and immunoprecipitation of ovalbumin from oviduct explants labeled with radioactive amino acids in tissue culture were used to follow and measure the degree of tubular gland cell cytodifferentiation. Ovalbumin is undetectable in the unstimulated chick oviduct and in oviducts of chicks treated with progesterone (P) for up to 5 days. Ovalbumin synthesis is first detected 24 hr after E administration, and by 5 days it accounts for 35% of the soluble protein being synthesized. Tubular gland cells begin to synthesize ovalbumin before gland formation which commences after 36 hr of E treatment. When E + P are administered together there is initially a synergistic effect on ovalbumin synthesis, however, after 2 days ovalbumin synthesis slows and by 5 days there is only 1/20th as much ovalbumin per magnum as in the E-treated controls. Whereas the magnum wet weight doubles about every 21 hr with E alone, growth stops after 3 days of E + P treatment. Histological and ultrastructural observations show that the partially differentiated tubular gland cells resulting from E + P treatment never invade the stroma and form definitive glands, as they would with E alone. Instead, these cells appear to transform into other cell types—some with cilia and some with unusual flocculent granules. We present a model of tubular gland cell cytodifferentiation and suggest that a distinct protodifferentiated stage exists. P appears to interfere with the normal transition from the protodifferentiated state to the mature tubular gland cell.  相似文献   

5.
An in situ hybridization method using paraffin-embedded sections was used to characterize the chicken oviduct cells synthesizing ovalbumin mRNA due to the action of estrogen and progesterne. The cytodifferentiation of the oviduct cells was induced by 17β-estradiol administration to newly hatched female chicks. To avoid possible effect of estrogen on the action of progesterone the chicks were withdrawn from the estrogen by six days withdrawal period without hormone treatment. Ovalbumin mRNA was not synthesized after a period of estrogen withdrawal. Administration of estrogen induced ovalbumin mRNA in the tubular gland cells. Administration of progesterone induced the expression of ovalbumin mRNA in the surface epithelial cells. It was also found that progesterone induced mucus producing goblet cells in the surface epithelium. Estrogen did not have an effect on the mucus production, which suggests that progesterone could induce the terminal differentiation of the goblet cells. We conclude that the expression of ovalbumin in the surface epithelial cells and in the tubular gland cells is specific for progesterone and estrogen, respectively.  相似文献   

6.
During estrogen-induced development of the quail oviduct, tubular glands are formed by evagination of epithelial cells into the stroma. The distribution of laminin was studied during the early stages by means of immunofluorescence and immunoperoxidase techniques. Ultrastructural changes in the basal lamina were studied by electron microscopy. Basement membranes at all stages of development were delineated with 3 polyclonal antilaminin antisera. However, in ovariectomized birds, laminin could not be detected by one of the polyclonal antilaminin antisera. Subsequently, this antibody detected laminin as epithelial cell evaginations were induced by estradiol benzoate. The heavy and light chains of Engelbreth Holm sarcoma (EHS) laminin were revealed in immunoblotting by all antibodies. By electron microscopy after the immunoperoxidase technique with antilaminin antisera laminin appears to be accumulated mainly in the lamina densa. Furthermore, the thickness of the basal lamina increases during oviduct development. These data indicate that basal lamina organization is modified during oviduct cell differentiation and that immunoreactivity of epithelial basement membrane laminin changes during development.  相似文献   

7.
The avian eggshell is an acellular bioceramic containing organic and inorganic phases that are sequentially assembled during the time the egg moves along the oviduct. As it has been demonstrated in other mineralized tissues, mineralization of the eggshell is regulated by extracellular matrix proteins especially the anionic side chains of proteoglycans. Among them, osteopontin has been found in the avian eggshell and oviduct. However, its precise localization in the eggshell or in different oviduct regions during eggshell formation, nor its function have been established. By using anti-osteopontin antibody (OPN 1), we studied its immunolocalization in the isthmus, red isthmus and shell gland of the oviduct, and in the eggshell during formation. In the eggshell, osteopontin was localized in the core of the non-mineralized shell membrane fibers, in the base of the mammillae and in the outermost part of the palisade. In the oviduct, OPN 1 was localized in the ciliated epithelial but not in the tubular gland cells of the isthmus, in the ciliated epithelial cells of the red isthmus, and in the non-ciliated epithelial cells of the shell gland. The occurrence of osteopontin in each of the oviduct regions, coincided with the concomitant presence of the egg in such region. Considering the reported inhibitory function of osteopontin in other mineralized systems, together with its main occurrence in the non-mineralized parts of the eggshell and at the outermost part of the shell, suggests that this molecule could be part of the mechanism regulating the eggshell calcification.  相似文献   

8.
Summary Oviductal functions have been studied mainly in primary epithelial cell culture and organ culture. However, secretory cells and ciliated cells coexist in the epithelium, and the small size of the oviduct limits the sources of both epithelial and stromal cells. To circumvent the limits, we attempted to establish clonal cell lines from an oviduct of a p53-deficient mouse. An oviduct was enzymatically digested and cultured in medium containing 10% fetal calf serum supplemented with estradiol-17β. Morphologically distinct clones (10 epithelial and 4 fibroblastic clones) were established, and all clones expressed estrogen receptor α and progesterone receptor. Expression of a mouse oviduct-specific glycoprotein gene as a marker of secretory cells was limited in one clone and was stimulated by estrogens and suppressed by progesterone. Expression of helix factor hepatocyte nuclear factor/forkhead homologue-4 gene as a marker of ciliated cells was limited in two clones and was suppressed by estrogens. The two genes were never coexpressed in any clones. The results strongly suggest that the oviductal epithelium consists of two functionally determined populations. To our knowledge, this is the first establishment of functional clonal cell lines of the oviduct and makes it possible to study independently two oviductal functions, secretion and ciliogenesis.  相似文献   

9.
A rapid method to obtain large amounts of tubular gland cells from chick oviduct was developed. Combined collagenase and trypsin treatment allowed within 1.5 h complete dissociation of the magnum portion of the oviduct. By differential attachment of cells, fibroblasts were separated from tubular gland- and ciliated cells. Tubular gland cells attached within 18 h to plastic Petri dishes, had large secretory granules and grew very actively. The responsiveness of cells to hormones and/or antihormone was tested by measurement of cell proliferation and specific protein synthesis. After 7 days of culture in the presence of estradiol (50 nM) or progesterone (100 nM), cell growth was increased by approximately 50 and 35% respectively. Tamoxifen (100 nM) inhibited the estradiol induced growth stimulation, but had also negative effects of its own. The anti-progesterone (in mammals) RU 486, inactive per se, did not antagonize progesterone induced growth. Ovalbumin- and conalbumin synthesis after 4-5 days of cultures under different hormonal conditions was assessed after immunoprecipitation of newly synthesized [35S]methionine labelled proteins. In the presence of estradiol (50 and 100 nM), progesterone (50 nM), and both estradiol and progesterone together (50 nM of each), ovalbumin and conalbumin synthesis was increased, when compared to control cultures without hormones, or to oviduct fibroblasts. Hormonal stimulation of ovalbumin synthesis was also shown in cell supernatant and culture medium after gel electrophoresis.  相似文献   

10.
To study cell proliferation in different cell types and segments of the mammary gland, we devised a dual staining procedure, combining nuclear labeling by 5-bromo-2'-deoxy-uridine (BrdU) uptake (revealed by a dark-brown precipitate) and an alternative (red or blue) cytoplasmic labeling by antibodies specific for the differentiation proteins of epithelial, myoepithelial, and secretory cell types. The following markers, revealed by APAAP or beta-galactosidase procedure, were selected: alpha-smooth muscle actin for the myoepithelial cells, keratin (detected by AE1 monoclonal) for the luminal epithelial cells, alpha-lactalbumin and beta-casein for the secretory cells. To follow the full process of organogenesis, the study was conducted in mouse mammary glands from virgin, primed, and lactating animals and from glands cultured in vitro under specific hormone stimulation. Cell proliferation was localized mainly in focal areas (end buds), and mostly corresponded to "null" undifferentiated cells. Estrogen and progestin stimulation induced a relative increase of proliferating differentiated cells of either epithelial or myoepithelial type, localized in ducts and alveolar structures. Prolactin stimulation induced proliferation in secretory cells.  相似文献   

11.
The ultrastructural changes occurring in the fully functional oviduct of Isa Brown laying hens were studied during various stages of the laying cycle. Hens were killed at different positions of the egg in the oviduct. The oviduct was lined by ciliated and non-ciliated cells (also referred to as granular cells). The granular cells in the infundibulum contributed to secretion during egg formation, whereas ciliated cells showed little evidence of secretion. Ultrastructural changes were recorded in the granular and glandular cells of the distal infundibulum. In the magnum, the surface ultrastructure revealed glandular openings associated with the ciliated and granular cells. Cyclic changes were recorded in the glandular cells of the magnum. With respect to the three observed types of glands, the structure of gland type A and C cells varied at different egg positions in the oviduct, whereas type B cells represented a different type of gland cell containing amorphous secretory granules. The surface epithelium of the isthmus was also lined by mitochondrial cells. Two types of glandular cell (types 1 and 2) were recorded in the isthmus during the laying cycle. Intracisternal granules were found in type 2 cells of the isthmus. A predominance of glycogen particles occurred in the tubular shell gland. The granular cells in the shell gland contain many vacuoles. During egg formation, these vacuoles regressed following the formation of extensive rough endoplasmic reticulum; the reverse also occurred. The disintegrated material found in the vacuoles may have been derived from the disintegrating granules. The Physiology Teaching Unit, University of New England, provided financial support to K. Chousalkar for this study.  相似文献   

12.
This study reports the anatomy, histology, and ultrastructure of the male Mullerian gland of the caecilian Uraeotyphlus narayani, based on dissections, light microscopic histological and histochemical preparations, and transmission electron microscopic observations. The posterior end of the Mullerian duct and the urinogenital duct of this caecilian join to form a common duct before opening into the cloaca. The boundary of the entire gland has a pleuroperitoneum, followed by smooth muscle fibers and connective tissue. The Mullerian gland is composed of numerous individual tubular glands separated from each other by connective tissue. Each gland has a duct, which joins the central Mullerian duct. The ducts of the tubular glands are also surrounded by abundant connective tissue. The tubular glands differ between the column and the base in regard to the outer boundary and the epithelial organization. The basement membrane of the column is so thick that amoeboid cells may not penetrate it, whereas that around the base of the gland is thin and appears to allow migration of amoeboid cells into and out of the basal aspect of the gland. The epithelium of the column has nonciliated secretory cells with basal nuclei and ciliated nonsecretory cells with apical nuclei. In the epithelium of the base there are secretory cells, ciliated cells, and amoeboid cells. The epithelium of ducts of the tubular glands is formed of ciliated dark cells and microvillated light cells. The epithelium of the central duct is formed of ciliated dark cells also possessing microvilli, ciliated light cells also possessing microvilli, and microvillated light cells that lack cilia. It is regressed during March to June when the testis lobes are in a state of quiescence. The Mullerian gland is active in secretion during July to February when the testis is active in spermatogenesis.  相似文献   

13.
Summary We are studying the regulation of ciliated cell differentiation using an in vitro model of tracheal regeneration. Previously, we reported that removal of growth stimulating compounds such as epidermal growth factor (EGF) and cholera toxin reduced DNA synthesis and cell number while increasing ciliated cell differentiation (Clark et al., 1995). This result suggested that the induction of growth arrest may stimulate terminal differentiation of airway epithelial cells into ciliated cells. Transforming growth factor βs (TGFβs) inhibit epithelial cell proliferation and have also been shown to stimulate epithelial cell differentiation. In this study, the effect of TGFβ1 on growth and ciliated cell differentiation of rat tracheal epithelial (RTE) cells was examined. TGFβ1 inhibited [3H]thymidine incorporation by RTE cells in a dose-dependent manner. A 40% inhibition was observed after a 24-h incubation with 10 pM TGFβ1. Continuous treatment with TGFβ1 (1–50 pM) also reduced cell number during the time when ciliogenesis occurs. This reduction resulted in part from a loss of cells through exfoliation, in addition to the inhibition of proliferation. The exfoliated cells exhibited several morphological features characteristic of apoptosis, including shrunken cells, condensed and fragmented nuclei, and intact organelles. In addition, electrophoretic analysis of genomic DNA analysis isolated from exfoliated cells demonstrated the presence of a nucleosomal ladder. However, in contrast to the removal of EGF, treatment with TGFβ1 for 7 d did not increase ciliated cell differentiation. TGFβ1 is, therefore, capable of inhibiting proliferation and increasing apoptosis in RTE cells without stimulating ciliated cell differentiation.  相似文献   

14.
On the basis of histological and histochemical characteristics the oviduct of adult Bufo vulgaris can be separated into six zones. These characteristics include mainly the relative abundance of secretory and ciliated epithelial cells, mucosal foldings, tubular glands and the staining properties of the secretory elements. The VI zone (uterine segment) is totally deprived of tubular glands and is prodoundly rich in epithelial secretory cells. These cells and the tubular glands, when well-developed, are rich in neutral and acid mucins in the preovulatory phase, whereas this content is greatly diminished after ovulation. Similarly, the weight and the length of the oviduct displays a marked seasonal pattern. The same is observed for its protein content and acid and alkaline phosphatases. These parameters show the highest values in the preovulatory period and lowest after ovulation. The toad oviduct also displays marked hydroxysteroid dehydrogenase activity along the mucosal epithelium. Its functional significance remains a matter of debate, however. A marked parallelism between the present data and those obtained by others in other amphibians indicates the existence of a common pattern of seasonal modifications correlated mainly with the release of the eggs and the formation of their multi-layered coat.  相似文献   

15.
The oviduct of non-pregnant females of the ovoviviparous salamander, Salamandra salamandra, was examined using SEM-techniques. In the luminal epithelium polygonal ciliated cells were found along the entire surface of the oviduct, except the uterus, and non-ciliated cells with a varying number of short or long microvilli. The ciliated cells occur in the most anterior portion of the oviduct, the pars recta; they are sparsely distributed in the p. convoluta I, but abundant in the p. convoluta II and III. Non-ciliated cells comprise several small gland cells, restricted to the p. convoluta I, II, III, and undifferentiated cells both provided with microvilli, but difficult to be discerned from their surface appearance. The p. convoluta I, II, III is characterized by three types of secretory cells forming tubular glands, each type confined to a given zone. The secretory cells have slender microvilli at their surfaces. In freeze-cracked glands details of their secretory products can be visualized. The findings are compared to previously published TEM-investigations and discussed with regard to some functions of the oviduct during reproduction.  相似文献   

16.
Kress A  Schmekel L 《Tissue & cell》1992,24(1):95-110
Runcina is a small hermaphroditic opisthobranch which possesses a monaulic reproductive system. In previous studies the male copulatory apparatus, the structure of the spermatophore and also the process of oogenesis have been described. The present paper gives an account of the ultrastructure of the female genital glands of the oviduct. In Runcina the oviduct comprises three primary regions, the albumen gland, the egg capsule gland and the mucous gland. Eggs enter the fertilization chamber and as they pass the opening of the albumen gland they become surrounded by albumen or perivitelline fluid. The eggs appear to become encapsulated as they traverse the egg-capsule gland and are eventually stuck together by mucus to form an egg mass. The epithelial lining of the three glands consists of alternating ciliated and secretory cells. The characteristics in secretory products of the glandular cells are described, and are discussed with reference to the way they contribute to egg vestment.  相似文献   

17.
Embryonic development of the mouse salivary glands begins with epithelial thickening and continues with sequential changes from the pre-bud to terminal bud stages. After birth, morphogenesis proceeds, and the glands develop into a highly branched epithelial structure that terminates with saliva-producing acinar cells at the adult stage. Acinar cells derived from the epithelium are differentiated into serous, mucous, and seromucous types. During differentiation, cytokeratins, intermediate filaments found in most epithelial cells, play vital roles. Although the localization patterns and developmental roles of cytokeratins in different epithelial organs, including the mammary glands, circumvallate papilla, and sweat glands, have been well studied, their stage-specific localization and morphogenetic roles during salivary gland development have yet to be elucidated. Therefore, the aim of this study was to determine the stage and acinar cell type-specific localization pattern of cytokeratins 4, 5, 7, 8, 13, 14, 18, and 19 in the major salivary glands (submandibular, sublingual, and parotid glands) of the mouse at the E15.5, PN0, PN10, and adult stages. In addition, cell physiology, including cell proliferation, was examined during development via immunostaining for Ki67 to understand the cellular mechanisms that govern acinar cell differentiation during salivary gland morphogenesis. The distinct localization patterns of cytokeratins in conjunction with cell physiology will reveal the roles of epithelial cells in salivary gland formation during the differentiation of serous, mucous or seromucous salivary glands.  相似文献   

18.
The histological development of the quail oviduct and the changes in concentrations of progesterone receptor, ovalbumin, conalbumin, ovomucoid and ovoglycocomponents are analyzed during the period spanning 7-35 days of age. The initiation of luminal epithelial cell proliferation is the first event of magnum growth. The epithelial cells begin to evaginate into subepithelial stroma and form tubular glands. Meanwhile, luminal epithelium starts cellular pleomorphism through ciliogenesis. No egg white proteins are detectable in the developing glands; at the same time, the concentration of the progesterone receptor increases from about 5500 sites/cell to 30,300 sites/cell. Tubular gland cells then begin to synthetize and accumulate egg white proteins, mucous cells differentiate in the luminal epithelium, and the cell proliferation decreases and finally stops. Compared with earlier studies dealing with the blood levels of estrogen and progesterone in developing quails during the same period, and the cellular changes induced in the oviducts of ovariectomized and ovariectomized-hypophysectomized quail by exogenous steroids, these results distinguish between the cellular responses that are physiologically controlled by estradiol and other responses that have multihormonal regulation.  相似文献   

19.
20.
The histological, ultrastructural, and biochemical changes occurring during hormone-induced cytodifferentiation of the ovalbumin-secreting glands in the chick oviduct have been studied. Marked perivascular edema is an initial response of the immature oviduct stroma to diethylstilbestrol administration and is accompanied by an interstitial migration of mononuclear cells. Mitotic activity in the immature mucosal epithelium increases within 24 hr, and glands begin to develop on days 2–4 as budlike invaginations into the subepithelial stroma. An immediate intracellular effect of the hormone is aggregation of previously dispersed ribosomes. Ribosomal zones in the nucleolus gain prominence, and there is a progressive development of rough endoplasmic reticulum in the epithelial cells. Extensive profiles of endoplasmic reticulum are present in the gland cells by day 6. Fine apical progranules appear in the epithelial cells on day 2, and ovalbumin can be measured immunochemically by day 3 at about the same time that new species of nuclear RNA have been identified. Ovalbumin granules form within condensing vacuoles in the Golgi zone and begin to be released into the lumina of the gland acini at about day 6 of the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号