首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of stereospecifically labeled polyunsaturated fatty acids were prepared by biosynthesis from [8-DR-3H]- and [8-LS-3H]stearic acids. The labeled stearic acids were synthesized by a novel scheme employing readily available alkyne and aldehyde starting materials. The stereochemical purity of the prochiral tritium labels was judged to be greater than 99%, as determined by analysis of the octadec-1-yn-8(R)- and 8(S)-ol intermediates in the synthesis. Previously, the labeled arachidonic acids were used to investigate the stereoselectivity of hydrogen abstraction in the biosynthesis of leukotriene epoxides. We have now investigated the selectivity of hydrogen abstraction in a chemical synthesis of 14,15-leukotriene (LT) A4 from mixtures of [3-14C]- and either [10-DR-3H]- or [10-LS-3H]15(S)-HPETE methyl esters. Reaction with either chirally labeled precursor led to 70-95% retention of 3H relative to 14C in the 14,15-LTA4 and 10-Z-14,15-LTA4 products after purification by high performance liquid chromatography. The 15-dienone obtained from this reaction was consistently enriched in 3H relative to 14C after isolation and purification. Evidence was obtained to indicate that the majority of the 3H in the products was retained in its original location and configuration. These results indicate that the biomimetic chemical reaction is stereo-random with respect to hydrogen loss from carbon 10 and that, in contrast to the reaction as it occurs in leukocytes and platelets, in the chemical model the reaction begins by decomposition of the hydroperoxide group, with hydrogen loss from carbon 10 occurring as a late or final step.  相似文献   

2.
The biosynthetic conversions of arachidonic acid to hydroperoxyeicosatetraenoic acids (HPETEs) and the further conversion of leukotriene epoxides are accompanied by stereoselective hydrogen abstraction from the reaction substrate. Furthermore, this hydrogen removal has always been found to occur in fixed stereochemical relationship to carbon-oxygen chiral center(s) in the substrate or product. We have used stereospecifically labeled 10-3H-substrates with 14C internal standard to investigate whether the same relationships bear in HPETE and leukotriene formation during autoxidation. After autoxidation of labeled arachidonate, both the 8(R)- and 8(S)-HPETE enantiomers (resolved as diastereomer derivatives) and the 12(RS)-HPETE were observed to retain 41-47% 3H relative to the starting material. In autoxidative formation of leukotrienes from labeled 15(S)-HPETE the four main leukotrienes, including two derived from 14,15-leukotriene A4 hydrolysis, were observed to have retained an average of 45% 3H. Primary and secondary isotope effects were found to accompany these reactions. The results prove that stereorandom hydrogen abstraction occurs in autoxidation and that the hydrogen loss bears no stereochemical relationship to chiral oxygen center(s) in the HPETE product, (8(R) or 8(S], or the 15(S)-hydroperoxy substrate. We conclude that the chiral features of the biosynthetic reactions are a reflection of enzymatic control of stereochemistry. Nonetheless, the findings of primary and secondary isotope effects in autoxidation which are similar to those observed in the analogous biosynthetic reactions suggests that, except for stereochemical control, the autoxidative and enzymatic reactions may be mechanistically similar.  相似文献   

3.
Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The kcat/Km values for 8S-HPETE and AA were 3.3x10(3) and 2.7x10(4) M(-1) s(-1), respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR alpha more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.  相似文献   

4.
Four isomers of 8,15-diHETE as well as 14,15-diHETEs are isolated and characterized after exposure of 15-HPETE to hemoglobin. It is found that 83% of the C-8 oxygen atoms in 8(R), 15(S)-diHETE and 8(S), 15(S)-diHETE, and 41% of the C-8 oxygen atoms in 8(R), 15(S)-11Z-diHETE and 8(S), 15(S)-11Z-diHETE are derived from H2(18)O. These results suggest that hemoglobin catalyzes the transformation of 15-HPETE into these products via a free radical process, possibly involving the intermediacy of 14,15-LTA. Intact human leukocytes contain a distinct enzyme system for catalyzing the conversion of 15-HPETE into 14,15-LTA. This enzyme activity is inhibited by ETYA and is rapidly denatured upon homogenization of the intact leukocytes.  相似文献   

5.
Schwarz K  Gerth C  Anton M  Kuhn H 《Biochemistry》2000,39(47):14515-14521
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of lipoxygenases. Although the mechanistic basis of lipoxygenase specificity is not completely understood, sequence determinants for the positional specificity have been identified for various isoenzymes. In this study we altered the positional specificity of the human 5-lipoxygenase by multiple site-directed mutagenesis and assayed the leukotriene A(4) synthase activity of the mutant enzyme species with (5S,6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eicos atetraenoic acid (5S-HpETE) as substrate. The wild-type 5-lipoxygenase converts 5S-HpETE almost exclusively to leukotriene A(4) as indicated by the dominant formation of leukotriene A(4) hydrolysis products. Since leukotriene synthesis involves a hydrogen abstraction from C(10), it was anticipated that the 15-lipoxygenating quadruple mutant F359W + A424I + N425M + A603I might not exhibit a major leukotriene A(4) synthase activity. Surprisingly, we found that this quadruple mutant exhibited a similar leukotriene synthase activity as the wild-type enzyme in addition to its double oxygenation activity. The leukotriene synthase activity of the 8-lipoxygenating double mutant F359W + A424I was almost twice as high, and similar amounts of leukotriene A(4) hydrolysis products and double oxygenation derivatives were detected with this enzyme species. These data indicate that site-directed mutagenesis of the human 5-lipoxygenase that leads to alterations in the positional specificity favoring arachidonic acid 15-lipoxygenation does not suppress the leukotriene synthase activity of the enzyme. The residual 8-lipoxygease activity of the mutant enzyme and its augmented rate of 5-HpETE conversion may be discussed as major reasons for this unexpected result.  相似文献   

6.
One of the many changes induced by topical application of phorbol ester or calcium ionophore A23187 to mouse skin is the appearance of an enzymic activity which will convert arachidonic acid to its 8-hydroxyeicosatetraenoic acid metabolite (8-HETE) (Gschwendt, M., et al (1986) Carcinogenesis 7, 449-455). Induction of this activity is lower in strains of mice with a weak inflammatory response to TPA, and the 8-HETE may be involved in the inflammation or hyperplasia. To further characterize the activity, we first measured the chirality of the product; it is almost exclusively the 8DS)-hydroxy enantiomer (8S-HETE). The 8(S)-HETE is formed from octadeuterated arachidonic acid with complete retention of deuterium labels, indicating that a keto intermediate is not involved in the biosynthesis. Using arachidonic acids labeled with a prochiral tritium in either the 10DR or 10LS positions, we found that the biosynthesis of 8S-HETE is associated with the stereoselective abstraction of the 10DR hydrogen from the 10-carbon of the substrate. This stereoselective hydrogen removal conforms to the properties of an 8S-lipoxygenase. This is the only lipoxygenase known to catalyze solely 8S-oxygenation of arachidonic acid. The recent characterization of stereoselective biological effects for other HETEs serve as strong precedents to suggest that 8S-HETE has a specific role in the cellular tissue response to TPA.  相似文献   

7.
Arachidonate 12-lipoxygenase purified from porcine leukocytes shows 14R-oxygenase and 14,15-leukotriene A synthase activities with 15-hydroperoxy-arachidonic acid as substrate. The enzyme transformed 5,15-dihydroperoxy-arachidonic acid to several compounds with a conjugated tetraene. A major product was identified as 5S,14R,15S-trihydroperoxy-6,10,12-trans-8-cis-eicosatetraenoic acid, which was reduced to 5S,14R,15S-8-cis-lipoxin B. A requirement of molecular oxygen and the results of H218O experiments suggested that formation of the latter compound was attributed mostly to the 14R-oxygenase activity of the enzyme. There were several other minor products identified as lipoxin A and B isomers. They were produced presumably by hydrolysis of 14,15-epoxy compound formed by the leukotriene A synthase activity of 12-lipoxygenase.  相似文献   

8.
The purified lipoxygenase of rabbit reticulocytes converts arachidonic acid at 0 degrees C to 15-hydroperoxyeicosatetraenoic acid (15-HPETE) and to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) via reactions which involve hydrogen abstraction at C-13 and C-10, respectively. At 37 degrees C the enzyme converts arachidonic acid to additional products which were identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid, 8,15-dihydroperoxy-5,9,11,13- and 5,15-dihydroperoxy-6, 6,8,11,13-eicosatetraenoic acids (8,15-diHPETE and 5,15-HPETE, respectively) and diastereoisomers of 8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid (8,15-diHPETEs). The 8,15- and 5,15-diHPETEs were formed by double lipoxygenation since each incorporated 2 molecules of 18O2 and since their synthesis from 15-HPETE was blocked under anaerobic conditions. The 8,15-diHETEs each incorporated 18O from 18O2 at C-15 and were found to arise from nonenzymatic hydrolysis of an epoxytriene which was identified as 14,15-leukotriene A4 by trapping in acidic methanol. This compound was a major product of 15-HPETE in anaerobic incubations. The conversion of 15-HPETE to 14,15-leukotriene A4 was inhibited by the lipoxygenase inhibitors nordihydroguairetic acid and 5,8,11,14-eicosatetraynoic acid. The 14,15-leukotriene A4 synthase and 15-lipoxygenase activities were inhibited by 5,8,11,14-eicosatetraynoic acid in a similar time-dependent manner. The results support a mechanism whereby 14,15-leukotriene A4 is synthesized from 15-HPETE by a further enzymatic step carried out by the reticulocyte 15-lipoxygenase via hydrogen abstraction at C-10 and a redox cycle of the non-heme iron atom of the enzyme.  相似文献   

9.
Hepoxilins are biologically relevant eicosanoids formed via the 12-lipoxygenase pathway of the arachidonic acid cascade. Although these eicosanoids exhibit a myriad of biological activities, their biosynthetic mechanism has not been investigated in detail. We examined the arachidonic acid metabolism of RINm5F rat insulinoma cells and found that they constitutively express a leukocyte-type 12S-lipoxygenase. Moreover, we observed that RINm5F cells exhibit an active hepoxilin A(3) synthase that converts exogenous 12S-HpETE (12S-5Z,8-Z,10E,14Z-12-hydro(pero)xy-eicosa-5,8,10,14-tetraenoic acid) or arachidonic acid predominantly to hepoxilin A(3). 12S-lipoxygenase and hepoxilin A(3) synthase activities were co-localized in the cytosol; immunoprecipitation with an anti-12S-lipoxygenase antibody co-precipitated the two catalytic activities. These data suggested that hepoxilin A(3) synthase activity may be considered an intrinsic catalytic property of the leukocyte-type 12S-lipoxygenase. To test this hypothesis we cloned the leukocyte-type 12S-LOX from RINm5F cells, expressed it in Pichia pastoris, and found that the recombinant enzyme exhibited both 12S-lipoxygenase and hepoxilin A(3) synthase activities. The recombinant human platelet-type 12S-lipoxygenase and the porcine leukocyte-type 12S-lipoxygenase also exhibited hepoxilin A(3) synthase activity. In contrast, the native rabbit reticulocyte-type 15S-lipoxygenase did not convert 12S-HpETE to hepoxilin isomers. These data suggest that the positional specificity of lipoxygenases may be crucial for this catalytic function. This hypothesis was confirmed by site-directed mutagenesis studies that altered the positional specificity of the rat leukocyte-type 12S- and the rabbit reticulocyte-type 15-lipoxygenase. In summary, it may be concluded that naturally occurring 12S-lipoxygenases exhibit an intrinsic hepoxilin A(3) synthase activity that is minimal in lipoxygenase isoforms with different positional specificity.  相似文献   

10.
The stereochemistry of the major isomer of 14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid formed from 15-hydroperoxyeicosatetraenoic acid in human leukocytes was determined. The structure (erythro-14(R),15(S]-14,15-dihydroxy-5,8-cis-10,12-trans-eicosatetraenoi c acid) was assigned based on sodium arsenite thin-layer chromatography, NMR spectroscopy, and comparison with material prepared by total synthesis. This compound was found to inhibit leukotriene B4-induced superoxide anion generation in human neutrophils (IC50 = 10(-8)-10(-7) M). Superoxide anion generation induced by either formylmethionyl-leucyl-phenylalanine or arachidonic acid was not affected.  相似文献   

11.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

12.
Evidence for the formation of a positional isomer of leukotriene (LT) C3 (8,9-LTC3) from dihomo-gamma-linolenic acid has been published (Hammarstr?m, S. J. Biol. Chem. 256, 7712-7714, 1981). This report describes the conversion of dihomo-gamma-linolenic acid to a postulated intermediate in former reaction, 8,9-LTA3, by purified lipoxygenase from potato tubers. 8(S)-Hydroperoxyeicosatrienoic acid (8(S)-HPETrE) was the most abundant dioxygenation product formed followed by 11-, 15-, and 12-HPETrEs (in decreasing order of abundance). In addition, 8(S),15(S)- plus 8(S), 15(R)-dihydroperoxyeicosatetraenoic acid (DiHPE-TrE) (EZE), and 8(S),15(S)- plus 8(S),15(R)-dihydroxy-eicosatetraenoic acid (DiHETrE) (EEE) were generated. Under anaerobic conditions only the latter two isomers of 8,15-DiHETrE (EEE) were obtained from 8-HPETrE. The results suggest that 8,9-LTA3 is synthesized by the sequential action of 8- and 11-lipoxygenase activities associated with the potato enzyme.  相似文献   

13.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

14.
Human leukocytes converted [3H]-(S)-15-HPETE into [3H]-14,15-LTA. Rat basophilic leukemia cells transformed 14,15-LTA into two bioactive C(14)-S-linked peptides, which have been characterized as 15(S)-hydroxy-14(R)-S-glutathionyl-5,8Z,10,12E-icosatetraenoic acid and 15-(S)-hydroxy-14(R)-S-cysteinylglycyl-5,8Z,10,12E-icosatetraenoic acid by comparison with synthetic specimens.  相似文献   

15.
The initial and rate-limiting step in prostaglandin biosynthesis is stereoselective removal of the pro-S hydrogen from the 13-carbon of arachidonic acid. This is followed by oxygenation at C-11, formation of the five-membered ring, and a second oxygenation at C-15 to yield the endoperoxide product, prostaglandin G(2). Aspirin treatment of cyclooxygenase-2 is known to acetylate an active site serine, block prostaglandin biosynthesis, and give 15R-hydroxyeicosatetraenoic acid (15R-HETE) as the only product. 15R-HETE and prostaglandins have opposite stereoconfigurations of the 15-hydroxyl. To understand the changes that lead to 15R-HETE synthesis in aspirin-treated COX-2, we employed pro-R- and pro-S-labeled [13-(3)H]arachidonic acids to investigate the selectivity of the initial hydrogen abstraction. Remarkably, aspirin-treated COX-2 formed 15R-HETE with removal of the pro-S hydrogen at C-13 (3-9% retention of pro-S tritium label), the same stereoselectivity as in the formation of prostaglandins by native cyclooxygenase. To account for this result and the change in oxygenase specificity, we suggest that the bulky serine acetyl group forces a realignment of the omega end of the arachidonic acid carbon chain. This can rationalize abstraction of the C-13 pro-S hydrogen, the blocking of prostaglandin synthesis, and the formation of 15R-HETE as the sole enzymatic product.  相似文献   

16.
L-656,224 (7-chloro-2-[(4-methoxyphenyl)methyl]-3-methyl-5-propyl-4-benzofuranol) was a potent inhibitor of leukotriene biosynthesis in intact rat and human leukocytes and CXBG mastocytoma cells (IC50 values, 18-240 nM) and of crude human leukocyte and highly purified porcine leukocyte 5-lipoxygenase (IC50 value, 4 X 10(-7) M). The selectivity of L-656,224 for 5-lipoxygenase was shown through the relative lack of activity of the compound on 12-lipoxygenase, 15-lipoxygenase, cyclooxygenase, catalase, and myeloperoxidase. The compound showed (i) oral activity against hyperalgesia induced in the rat paw by injection of yeast or platelet-activating factor, (ii) dyspnea in sensitized inbred rats induced by an aerosol of antigen, and (iii) bronchoconstriction induced by an aerosol of Ascaris in squirrel monkeys, suggesting a role for 5-lipoxygenase inhibitors in the treatment of asthma and peripheral pain.  相似文献   

17.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, and 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]-labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

18.
Biological activities of isomers of 8,15-dihydroxyeicosatetraenoic acid   总被引:1,自引:0,他引:1  
Chemically synthesized 8(S), 15(S)-dihydroxy-5,11-cis-9, 13-trans-eicosatetraenoic acid and 8(R), 15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid were inactive, in comparison to leukotriene B4, in a human polymorphonuclear leukocyte chemokinetic assay and a rat polymorphonuclear leukocyte aggregation assay.  相似文献   

19.
Arachidonate 12-lipoxygenases of porcine and bovine leukocytes were different in substrate specificity and immunogenicity from the enzyme of bovine platelets (Arch. Biochem. Biophys. (1988) 266, 613). In order to extend the comparative studies on the two types of 12-lipoxygenase, we purified the enzyme from the cytosol of human platelets by immunoaffinity chromatography to a specific activity of about 0.3 mumol/min per mg protein at 37 degrees C. The purified enzyme was active with eicosapolyenoic acids and docosahexaenoic acid. Linoleic and linolenic acids were poor substrates in contrast to the high reactivity of the leukocyte enzymes with these octadecapolyenoic acids. The finding that the human platelet enzyme catalyzed 15-oxygenation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, raised a question if lipoxins were produced by incubation of the enzyme with leukotriene A4. However, the leukotriene A4 was scarcely transformed to lipoxin isomers by 12-lipoxygenases of human and bovine platelets. In sharp contrast, the porcine and bovine leukocyte enzymes converted leukotriene A4 to various lipoxin isomers by the reaction rates of 3% and 2% of the arachidonate 12-oxygenation. Thus, 12-lipoxygenases of human and bovine platelets were catalytically distinct from the porcine and bovine leukocyte enzymes in terms of their reactivities not only with linoleic and linolenic acids, but also with leukotriene A4 as lipoxin precursor.  相似文献   

20.
"Enzymatic" lipid peroxidation: reactions of mammalian lipoxygenases   总被引:9,自引:0,他引:9  
Lipoxygenase is a dioxygenase which incorporates one molecule of oxygen at a certain position of unsaturated fatty acids such as arachidonic and linolenic acids. The enzymatic oxygenation of unsaturated fatty acids is stereospecific concomitant with a stereoselective abstraction of hydrogen atom. Fatty acid cyclooxygenase is an atypical lipoxygenase incorporating two molecules of oxygen, and initiates the biosynthesis of prostaglandins and thromboxanes. Arachidonate 5-lipoxygenase is responsible for the leukotriene synthesis. No such bioactive compound has been found as a metabolite of the 12- and 15-lipoxygenase pathways, and their physiological roles are still unclarified. These enzymes have been purified, and their molecular and catalytic properties have been investigated. Their cDNA clones have been isolated, and their nucleotide sequences have been determined deducing the primary structures of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号