首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In was found that an intracellular ribonuclease was present as an inactive form in the fresh mycelium of Asp. oryzae. It was about 3 times activated either by 3 m urea or by the autolysis of mycelium at 30°C for 20 hr. The optimum pH of the ribonuclease activity was 8.3. It was heat sensitive (60°C, 10 min), and completely inhibited by 5 mm EDTA. It was activated by 1 mm Mg2+ and inhibited by Zn2+, Ca2+, Cd2+, Co2+ and Cu2+.  相似文献   

2.
O W Odom  B B Craig  B A Hardesty 《Biopolymers》1978,17(12):2909-2931
The Y-base of yeast tRNAPhe was replaced by the fluorophores 1-aminoanthracene or proflavine to yield derivatives which are active in all of the reactions of peptide elongation on reticulocyte ribosomes. The relatively long lifetime, higher quantum yield, and environmental sensitivity of 1-aminoanthracene make it a particulary useful adjunct to the Y-base in studying conformational changes in the anticodon region. The absorption and emission spectra of 1-aminoanthracene in tRNA in solutions in which it is active in peptide synthesis indicate that the probe is in a hydrophobic environment, apparently provided by stacking with the adjacent bases in the anticodon loop. The proflavine derivative, tRNA, was employed in iodide quenching, D2O enhancement, and fluorescence depolarization experiments. The results indicate that the fluorophore in partially but not completely protected from the solvent. Anisotropy studies indicate that in solutions approximating those which support peptide synthesis on ribosomes, the probes have significant but restricted flexibility within the anticodon loop. Considered with nmr data and Y-base fluorescence from crystals of tRNA, the results indicate that the solution and crystal structures of tRNAPhe are very similar. In turn, fluorescene from modified tRNAPhe bound to ribosomes is similar to that observed in solution. It is of special significance for future experiments involving nonradiative energy transfer that these probles adjacent to the anticodon retain independent flexibility when bound to ribosomes with poly(U). The tRNAPhe itself appears to be held rigidly on the ribosomes. It is concluded that within the limits dictated by the position and sensitivity of the probes used in this study, the mechanism of tRNAPhe binding to ribosomes and the movement of tRNA and mRNA during the translocation steps of peptide synthesis can be interpreted in terms of the well-defined crystal structure of tRNAPhe.  相似文献   

3.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

4.
Effect of Cl on Cd uptake by Swiss chard in nutrient solutions   总被引:6,自引:1,他引:5  
Swiss chard (Beta vulgaris L., cv. Fordhook Giant) was grown in nutrient solution with Cl concentrations varying between 0.01 mM and 120 mM. Solution Na concentration and ionic strength were maintained in all treatments by compensating with NaNO3. All solutions contained Cd (50 nM, spiked with 109Cd). Three different Cd2+ buffering systems were used. In one experiment, Cd2+ activity was unbuffered; its activity decreased with increased Cl concentration as a result of the formation of CdCln 2–n species. In the other experiments, Cd2+ activity was buffered by the chelator nitrilotriacetate (NTA, 50 M) and ethylene-bis-(oxyethylenenitrilo)-tetraacetate (EGTA, 50 M) at about 10–9 M and 10–11 M, respectively. Plant growth was generally unaffected by increasing Cl concentrations in the three experiments. In unbuffered solutions, Cd concentrations in plant tissue decreased significantly (p<0.01) (approximately 2.4-fold) as solution Cl concentration increased from 0.01 mM to 120 mM. However, this decrease was smaller in magnitude than the 4.7-fold decrease in Cd2+ activity as calculated by the GEOCHEM-PC program for the same range of Cl concentrations. In solutions where Cd2+ activity was buffered by NTA, Cd concentrations in plant tissue increased approximately 1.4-fold with increasing Cl concentration in solution, while the Cd2+ activity was calculated to decrease 1.3-fold. In solutions where Cd2+ activity was buffered by EGTA, Cd concentrations in the roots increased 1.3-fold with increasing Cl concentration in solution but there was no effect of Cl on shoot Cd concentrations. The data suggest that either CdCln 2–nspecies can be taken up by plant roots or that Cl enhances uptake of Cd2+ through enhanced diffusion of the uncomplexed metal to uptake sites.Abbreviations DAS days after sowing - EGTA ethylene-bis-(oxyethylenenitrilo)-tetraacetate - HBED N,N-bis(2-hydroxybenzyl)-ethylenediamine-N,N-diacetate - NTA nitrilotriacetate  相似文献   

5.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

6.
Conformational and dynamic properties of the anticodon loop of yeast tRNAPhe were investigated by analyzing the time resolved fluorescence of wybutine serving as a local structural probe adjacent to the anticodon GmAA on its 3 side. The influence of Mg2+, important for stabilizing the tertiary structure of tRNA, and of the complementary anticodon s2UUC of E. coli tRNA 2 Glu were investigated.Fluorescence lifetimes and anisotropies were measured with ps time resolution using time correlated single photon counting and a mode locked synchronously pumped and frequency doubled dye laser as excitation source. From the analysis of lifetimes () and rotational relaxation times ( R ) we conclude that wybutine occurs in various structural states: (i) one stacked conformation where the base has no free mobility and the only rotational motion reflects the mobility of the whole tRNA molecule (=6 ns, R =19 ns), (ii) an unstacked conformation where the base can freely rotate (=100 ps, R = 370 ps) and (iii) an intermediary state (=2 ns, R = 1.6 ns).Under biological conditions, i. e. in the presence of Mg2+ and neutral salts, wybutine is found in a stacked and immobile state which is consistent with the crystallographic picture. In the presence of the complementary codon however, as exemplified by the E. coli-tRNA 2 Glu anticodon, our analysis indicates that the codon-anticodon complex exists in an equilibrium of structural states with different rotational mobility of wybutine. The conformation with wybutine freely mobile is the predominant one and suggests that this conformation of the codon-anticodon structure differs from the canonical 3–5 stack.  相似文献   

7.
The effect of lipid peroxidation on the Mg2+-independent and Mg2+-dependent activity of brain cell membrane 5-nucleotidase was determined and the affinity of the active sites of Mg2+-dependent enzyme for 5-AMP (substrate) and Mg2+ (activator) was examined. Brain cell membranes were peroxidized at 37°C in the presence of 100 M ascorbate and 25 M FeCl2 (resultant) for 10 min. The activity of 5-nucleotidase and lipid peroxidation products (thiobarbituric acid reactive substances) were determined. At 10 min, the level of lipid peroxidation products increased from 0.20±0.10 to 17.5±1.5 nmoles malonaldehyde/mg membrane protein. The activity of Mg2+-independent 5-nucleotidase increased from 0.201±0.020 in controls to 0.305±0.028 mol Pi/mg protein/hr in peroxidized membranes. In the presence of 10mM Mg2+, the activity increased by 5.8-fold in the peroxidized membrane preparation in comparison to 14-fold in control In peroxidized preparation, the affinity of active site of Mg2+-dependent 5-nucleotidase for 5-AMP tripled, as indicated by a significant decrease inK m (K m=95±2 M AMP for control;K m=32±2 MAMP for peroxidized).V max was significantly reduced from 3.35±0.16 in control to 1.70±.09 moles Pi/mg protein in peroxidized membranes. The affinity of the active site for Mg2+ significantly increased (K m=6.17±0.37 mM Mg2+ for control;K m=4.0±0.31 peroxidized). The data demonstrate that lipid peroxidation modifies the Mg2+-dependent 5-nucleotidase function by altering the active sites for both the substrate and the activator. The modification of the 5-nucleotidase activity and the loss of Mg2+-dependent activation observed in this in-vitro study are similar to the changes previously observed by us in the hypoxic brain in-vivo. This suggests that lipid peroxidation which specifically alters the active site may be the underlying mechanism of the modification of 5-nucleotidase during hypoxia.  相似文献   

8.
Metal ion interactions with phosphoenolpyruvate carboxylase from the CAM plant Crassula argentea and the C4 plant Zea mays were kinetically analyzed. Fe2+ and Cd2+ were found to be active metal cofactors along with the previously known active metals Mg2+, Mn2+, and Co2+. In studies with the Crassula enzyme, Mg2+ yielded the highest Vmax value but also generated the highest values of Km(metal) and Km(pep). For these five active metals lower Km(metal) values tended to be associated with lower Km(pep) values. PEP saturation curves showed more kinetic cooperativity than the corresponding metal saturation curves. The activating metal ions all have ionic radii in the range of 0.86 to 1.09 Å. Ca2+, Sr2+, Ba2+, and Ni2+ inhibited competitively with respect to Mg2+, whereas Be2+, Cu2+, Zn2+, and Pd2+ showed mixed-type inhibition. Vmax trends with the five active metals were similar for the C. argentea and Z. mays enzymes except that Cd2+ was less effective with the maize enzyme. Km(metal) values were 10- to 60-fold higher in the enzyme from Z. mays.  相似文献   

9.
Thiophosphate analogs of adenine nucleotides were used to establish the absolute stereochemistry of nucleotide substrates in the reactions of carbamate kinase (Streptococcus faecalis), unadenylylated glutamine synthetase (Escherichia coli), and carbamoyl-phosphate synthetase (E. coli). 31P NMR was used to determine that carbamate kinase uses the B isomer of Ado-5′-(2-thioPPP) in the presence of Mg2+. The stereospecificity of the reaction with carbamate kinase was not reversed by Cd2+ suggesting that the metal ion does not bind to the β-phosphoryl group or that both Mg2+ and Cd2+ bind to the sulfur atom. Carbamate kinase uses both A and B isomers of Ado-5′-(1-thioPP) with Mg2+ and Cd2+. We have previously reported that carbamoyl-phosphate synthetase uses the A isomer of Ado-5′-(2-thioPPP) at both ATP sites with Mg2+ (Raushel et al., 1978J. Biol. Chem.253, 6627). Current experiments show that the stereospecificity is reversed by Cd2? and that both A and B isomers are used when Zn2+ is present. With Ado-5′-(1-thioPPP), the B isomer is used with Mg2+, the A isomer with Cd2+, and both isomers with Zn2+. Neither carbamate kinase nor carbamoyl-phosphate synthetase utilized Co(III)(NH3)4ATP as a substrate and thus we can only speculate that the Δ chelate ring configuration is the chelate structure utilized by carbamoyl-phosphate synthetase (based on the analogy between thiophosphate-ATP analogs and Co3+-ATP analogs utilized by hexokinase (E. K. Jaffe, and M. Cohn, 1978Biochemistry17, 652). If the sulfur of the β-phosphoryl of Ado-5′-(2-thioPPP) binds to the metal ion with carbamate kinase, then the Δ chelate ring is also used in this enzyme that catalyzes one of the steps in the overall reaction catalyzed by carbamoyl-phosphate synthetase. Glutamine synthetase reacts with the B isomer of both Ado-5′-(2-thioPPP) and Ado-5′-(1-thioPPP) in the presence of Mg2+. When Co2+ is used with this enzyme the A and B isomers of both thio-ATP compounds are substrates. Co(III)(NH3)4ATP is not a substrate for glutamine synthetase. Glutamine synthetase is therefore different from the two previously mentioned enzymes in that it used the opposite A ring configuration for the metal-ATP chelate.  相似文献   

10.
Glutaminase (EC 3.5.1.2) was isolated from Pseudomonas nitroreducens IFO 12694 grown on 0.6% sodium glutamate as a nitrogen source (325-fold purification, 13% yield). The molecular weight of the enzyme was estimated to be 40,000 by gel filtration and SDS-gel electrophoresis. The enzyme hydro-lyzed glutamine optimally at pH 9, and its Km was 6.5 mm. d-Glutamine, γ-glutamyl p-nitroanilide, γ-glutamylmethylamide, γ-glutamylethylamide (theanine), and glutathione showed respectively 107, 85, 78, 74, and 82% reactivity of glutamine. Zn2+, Ni2+, Cd2+, Co2+, Fe2+, and Cu2+ repressed the enzyme activity strongly.

Glutaminase formed γ-glutamylhydroxamate in the reaction mixture containing glutamine and hydroxylamine (transferring reaction). The optimum pH of the transferring reaction was 7–8, and the Km for glutamine and hydroxylamine were 4 mm and 120 mm, respectively. γ-Glutamyl derivatives hydrolyzable by glutaminase showed reactivity for the transferring reaction. Methylamine or ethylamine was replaceable for hydroxylamine with 3 or 8% reactivity. The effect of divalent cations was not so striking as in the hydrolyzing reaction.  相似文献   

11.
The purpose of the present study was to investigate the in vitro and the in vivo effects of cadmium, zinc, mercury and lead on -aminolevulinic acid dehydratase (ALA-D) activity from radish leaves. The in vivo effect of these metals on growth, DNA and protein content was also evaluated. The results demonstrated that among the elements studied Cd2+ presented the highest toxicity for radish. 50% inhibition of ALA-D activity (IC50) in vitro was at 0.39, 2.39, 2.29, and 1.38 mM Cd2+, Zn2+, Hg2+ and Pb2+, respectively. After in vivo exposure Cd2+, Zn2+, Hg2+ and Pb2+ inhibited ALA-D by about 40, 26, 34 and 15%, respectively. Growth was inhibited by about 40, 10, 25, and 5% by Cd2+, Zn2+, Hg2+, and Pb2+, respectively. DNA content was reduced about 35, 30, 20, and 10% for Cd2+, Zn2+, Hg2+, and Pb2+, respectively. The metal concentration in radish leaves exposed to Cd2+, Zn2+, Hg2+, and Pb2+ was 18, 13, 6, and 7 mol g–1, respectively. The marked ability of radish to accumulate Cd2+ and Zn2+ raises the possibility of using this vegetable as a biomonitor of environmental contamination by these metals.  相似文献   

12.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

13.
We have studied Cd2+-induced effects on mitochondrial respiration and swelling in various media as a function of the [Cd2+] in the presence or absence of different bivalent metal ions or ruthenium red (RR). It was confirmed by monitoring oxygen consumption by isolated rat liver mitochondria that, beginning from 5 M, Cd2+ decreased both ADP and uncoupler-stimulated respiration and increased their basal respiration when succinate was used as respiratory substrate. At concentrations higher than 5 M, Cd2+ stimulated ion permeability of the inner mitochondrial membrane, which was monitored in this study by swelling of both nonenergized mitochondria in 125 mM KNO3 or NH4NO3 medium and succinate-energized mitochondria incubated in a medium containing 25 mM K-acetate and 100 mM sucrose. We have found substantial changes in the above-mentioned Cd2+ effects on mitochondria treated in sequence with 100 M of Ca2+, Sr2+, Mn2+ or Ba2+(Me2+) and 7.5 M RR, as well as the alterations in Cd2+ action on the uptake of 137Cs+ by succinate-energized mitochondria in the presence or absence of valinomycin in acetate medium (50 mM Tris-acetate and 140 mM sucrose) with or without Ca2+ or RR. The evidence obtained indicate that Ca2+ exhibits a synergestic action on all Cd2+ effects examined, whereas Sr2+ and Mn2+, conversely, are antagonistic. In the presence of RR, the Cd2+ effects on respiration [stimulation of State 4 respiration and inhibition of 2,4-dinitrophenol (DNP)-uncoupled respiration] still exist, but are observed at concentrations of cadmium more than one order higher; the inhibition of State 3 respiration by Cd2+, conversely, takes place under even lower cadmium concentrations than those determined without RR in the medium. In addition, RR added simultaneously with cadmium in the incubation medium prevents any swelling in the nitrate media, but induces an increment both in Cd2+-stimulated swelling and 137Cs+ (analog of K+) uptake in the acetate media. For the first time, we have shown that Cd2+-induced swelling in all media under study is susceptible to cyclosporin A (CSA), a high-potency inhibitor of the mitochondrial permeability transition (PT) pore. The observations are interpreted in terms of a dual effect of cadmium on respiratory chain activity and permeability transition.  相似文献   

14.
1. Macroscopic and single-channel currents through several types of cloned rat brain Na+ channels, expressed in Xenopus oocytes, were measured using the patch-clamp technique. 2. For all cloned channel types and for endogenous Na+ channels in chromaffin cells, intracellular Mg2+ blocks outward currents in a voltage-dependent manner similar to that in rat brain type II Na+ channel (Pusch et al. 1989). 3. A sodium-channel mutant (cZ-2) with long single-channel open times was used to examine the voltage-dependent reduction of single-channel outward current amplitudes by intracellular Mg2+. This reduction could be described by a simple blocking mechanism with half-maximal blockage at 0 mV in 1.8 mM intracellular Mg2+ and a voltage-dependence of e-fold per 39 mV (in 125 mM [Na] i ); this corresponds to a binding-site at an electrical distance of 0.32 from the inside of the membrane. 4. At low Mg2+ concentrations and high voltages, the open-channel current variance is significantly elevated with respect to zero [Mg] i . This indicates that Mg2+ acts as a fast blocker rather than gradually decreasing current, e.g. by screening of surface charges. Analysis of the open-channel variance yielded estimates of the block and unblock rate constants, which are of the order of 2 · 108 M–1 s–1 and 3.6 · 105 s–1 at 0 mV for the mutant cZ-2. 5. A quantitative analysis of tail-currents of wild-type 11 channels showed that the apparent affinity for intracellular Mg2+ strongly depends on [Na] i . This effect could be explained in terms of a multi-ion pore model. 6. Simulated action potentials, calculated on the basis of the Hodgkin-Huxley theory, are significantly reduced in their amplitude and delayed in their onset by postulating Mg2+ block at physiological levels of [Mg] i .abbreviations [Na]i intracellular Na+ concentration - [K] i intracellular K+ concentration - [Mg] i intracellular Mg2+ concentration - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis-[\-amino-ethyl ether] N,N-tetra acetic acid - TEA tetraethylammonium  相似文献   

15.
Peptides that bind either U1 small nuclear RNA (U1 snRNA) or the anticodon stem and loop of yeast tRNAPhe (tRNA AC Phe ) were selected from a random-sequence, 15-amino acid bacteriophage display library. An experimental system, including an affinity selection method, was designed to identify primary RNA-binding peptide sequences without bias to known amino acid sequences and without incorporating nonspecific binding of the anionic RNA backbone. Nitrocellulose binding assays were used to evaluate the binding of RNA by peptide-displaying bacteriophage. Amino acid sequences of RNA-binding bacteriophage were determined from the foreign insert DNA sequences, and peptides corresponding to the RNA-binding bacteriophage inserts were chemically synthesized. Peptide affinities for the RNAs (K d 0.1–5.0 M) were analyzed successfully using fluorescence and circular dichroism spectroscopies. These methodologies demonstrate the feasibility of rapidly identifying, isolating, and initiating the analyses of small peptides that bind to RNAs in an effort to define better the chemistry, structure, and function of protein–RNA complexes.  相似文献   

16.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   

17.
18.
Xu X  Liu X  Zhang L  Chen J  Liu W  Liu Q 《The protein journal》2006,25(6):423-430
Acutolysin D, isolated from the venom of Agkistrodon acutus, possesses marked haemorrhagic and proteolytic activities. The molecular weight and the absorption coefficients (A 1% 280) of acutolyisn D have been determined to be 47,850 ± 8 amu and 9.3 by mass spectrometer and UV spectrum, respectively. The effects of metal ions on the conformation and activity of acutolysin D have been studied by following fluorescence, circular dichroism and biological activity measurements. Acutolysin D contains two Ca2+-binding sites and two Zn2+-binding sites determined by atomic absorption spectrophotometer. Zn2+ is essential for the enzyme activities of acutolysin D, however, the presence of 1 mM Zn2+ significantly decreases its caseinolytic activity and intrinsic fluorescence intensity at pH 9.0 due to Zn(OH)2 precipitate formation. Ca2+ is important for the structural integrity of acutolysin D, and the presence of 1 mM Ca2+ markedly enhances its caseinolytic activity. Interestingly, the caseinolytic activity which is inhibited partly by Cu2+, Co2+, Mn2+ or Tb3+ and inhibited completely by Cd2+, is enhanced by Mg2+. The fluorescence intensity of the protein decreases in the presence of Cu2+, Co2+, Cd2+ or Mn2+, but neither for Ca2+, Mg2+ nor for Tb3+. Zn2+, Ca2+, Mg2+, Cu2+, Mn2+, Co2+ and Tb3+ have slight effects on its secondary structure contents. In addition, Cd2+ causes a marked increase of antiparallel β-sheet content from 45.5% to 60.2%.  相似文献   

19.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

20.
The (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum presents negative cooperativity for the hydrolysis of Mg2+-ATP at different concentration ranges of this substrate. A kinetic model is proposed according to which Mg2+-ATP may bind to three different enzymatic species present during the catalytic cycle, E (K 1=1 µM), EP.Ca2 (K 9=500 µM) and *EP (K 7=20 µM), accelerating the release of Pi. The fact that each of these species has a different affinity for Mg2+-ATP allows a significant enhancement of the rate of Pi release to the medium at the different ranges of Mg2+-ATP concentration where the enzyme shows a kinetic cooperativity. The kinetic analysis of this mechanism yields an equation which is a ratio of two cubic polynomials (3:3 rate equations) with respect to Mg2+-ATP and which may explain the negative cooperativity of the enzyme at different concentration ranges of Mg2+-ATP.Abbreviations: EGTA, ethylene glycol bis(-aminoethylether)-N,N,N,N-tetraacetic acid; I.U., international units; piruvate kinase (EC 2.7.1.40); lactate dehydrogenase (EC 1.1.1.27); ATP phosphohydrolase (EC 3.8.1.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号