首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2 -.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.  相似文献   

2.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

3.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

4.
Restenosis is a major complication of percutaneous transluminal coronary angioplasty (PTCA) and is characterized by increased superoxide formation and accumulation of smooth muscle cells (SMCs). The mechanisms through which peroxisome proliferator-activated receptor-γ (PPAR-γ) modulates the pathological process are incompletely defined. In this study, balloon injury of porcine coronary arteries in vivo and cell scraping model in vitro were used to elucidate the pathway via this molecule. PPAR-γ and NADPH oxidase expression significantly increased both in neointimal hyperplasia after balloon injury or in the cultured SMCs after scraping injury. In vitro, PPAR-γ agonist 15-deoxy-Δ12,14-prostagladlin J2 (15d-PGJ2) decreased cell-scraping-induced superoxide generation through suppression of NADPH oxidase activity via down-regulation of p22phox and gp91phox. Furthermore, 15d-PGJ2 could suppress scraping-stimulated proliferation of SMCs. These data demonstrate that upregulation of PPAR-γ and NADPH oxidases are involved in restenosis and activation of PPAR-γ can inhibit the NADPH oxidase-dependent superoxide generation in SMCs after injury. These findings will provide a new potential drug target for restenosis after balloon injury. J. Cell. Physiol. 221: 387–393, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

5.
《Free radical research》2013,47(1):90-100
Abstract

The pharmacological activity of polyphenolic silibinin from milk thistle (Silybum marianum) is primarily due to its antioxidant property. However, this study found that silibinin promoted sustained superoxide (O2·–) production that was specifically scavenged by exogenous superoxide dismutase (SOD) in MCF-7 cells, while the activity of endogenous SOD was not changed by silibinin. Previous work proved that silibinin induced MCF-7 cell apoptosis through mitochondrial pathway and this study further proved that O2·– generation induced by silibinin was also related to mitochondria. It was found that respiratory chain complexes I, II and III were all involved in silibinin-induced O2·– generation. Moreover, it was found that silibinin-induced O2·– had protective effect, as exogenous SOD markedly enhanced silibinin-induced apoptosis.  相似文献   

6.
Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2∙−) as part of the innate host defense system, but exaggerated and sustained O2∙− generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2∙− and peroxynitrite (ONOO) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2∙− and ONOO production in macrophages, which was significantly reduced by nitrite (10 µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2∙− generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response.  相似文献   

7.
《Free radical research》2013,47(1-2):7-18
Generation and reactivity of superoxide (02?) and hydroxyl (OH') radicals in enzymatic and radiolytic systems were investigated over the temperature range from 20o-50oC. The generation rate and reaction kinetics of both enzymatically and radiolytically produced superoxide radicals were determined by a cytochrome c reduction assay. For OH' radical reaction studies the degradation of hyaluronic acid was assayed. An increase in temperature leads to a greater reactivity of both radicals, but in the case of an enzymatic source a disproportionate increase in the rate of generation is observed. In the pulse radiolysis system, the reactivity of superoxide radicals was found to be stimulated 15-fold over the temperature range from 20oC to 60oC, although the activity of superoxide dismutase was only minimally increased (about 1.6-fold). The results are discussed with respect to the possible importance of active oxygen species to the biological effects of hyperthermia.  相似文献   

8.
Treatment of macrophages with cytochalasin E in combination with a lectin was found to stimulate the generation of superoxide anions (O2-) very efficiently. The macrophages stimulated with concanavalin A, phytohemagglutinin or wheat germ agglutinin released superoxide, but cells pretreated with cytochalasin E released much greater amounts of superoxide, without notable lag time, upon stimulation with the lectin. Wheat germ agglutinin was found to be the most efficient stimulant among the lectins tested. Superoxide generation in guinea pig macrophages was shown to be dependent largely on cytoplasmic glucose metabolism and to some extent on mitochondrial respiration, since the superoxide release was largely but not totally inhibited by 2-deoxyglucose and to a lesser extent by antimycin A or KCN. The method presented is sensitive and allows rapid assay of the superoxide-generating activity with only 1–5 × 105 macrophages for a single determination. In application of this technique, elevation of the superoxide-generating activity was shown with macrophages elicited by chemical inflammation or those obtained from mice after treatment with tubercle bacilli.  相似文献   

9.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

10.
Recent molecular cloning studies have suggested the presence of at least two β4Gal transferase genes (β4GalT-V and β4GalT-VI) that may encode lactosylceramide synthase but whether they are functional in vivo and whether they mediate growth factor induced phenotypic change such as cell proliferation is not known. Our previous studies lead to the suggestion that various risk factors in atherosclerosis such as oxidized LDL, shear stress, nicotine, tumor necrosis factor-α converge upon LacCer synthase to induce critical phenotypic changes such as cell proliferation and cell adhesion [1]. However, whether platelet-derived growth factor also recruits LacCer synthase in mediating cell proliferation is not known. Here we have employed a Chinese hamster ovary mutant cell line Pro5Lec20 to determine whether this enzyme physiologically functions to mediate cell proliferation. We show that PDGF stimulates the activity of UDP galactose:glucosylceramide, β1,4galactosyltransferase. The activity of LacCer synthase increased about 2.5 fold within 2.5–5 min of incubation with PDGF in both wild type and Pro5Lec20 cells. Concomitantly, there was an increase in the generation of superoxide radicals, p44MAPK phosphorylation and cell proliferation in CHO cells. D-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a potent inhibitor of GlcCer synthase/LacCer synthase impaired PDGF mediated induction of LacCer synthase activity, superoxide generation, p44 MAPK activation and cell proliferation in Pro5Lec20 cells. PDGF-induced superoxide generation was also mitigated by the use of diphenylene iodonium; an inhibitor of NADPH oxidase activity that is required for superoxide generation. This inhibition was bypassed by the addition of lactosylceramide. Thus, β4GalT-V gene produces a bona fide LacCer synthase that can function in vivo to generate LacCer. Moreover, this enzyme alone can mediate PDGF induced activation of a signal transduction cascade involving superoxide generation, p44MAPK activation, phosphorylation of Akt and cell proliferation.  相似文献   

11.
《Free radical research》2013,47(4):361-373
Superoxide generation by polymorphonuclear leukocytes (PMNs) in suspension, or adherent to glass or plastic, after stimulation with /V-formylmethionyl-leucyl-phenylalanine or phorbol myristate acetate was measured by cytochromec reduction and spin trapping. Amounts of superoxide generated by adherent PM Ns were inversely related to cell density. The generation of hydrogen peroxide was also inhibited at higher cell densities. In contrast to adherent cells, superoxide released by PMNs in suspension linearly increased with respect to cell number over a wider range. Microscopic observation indicated that the number of cells in mutual contact increased rapidly at cell densities higher than 4 × 104 cells/cm2, and inhibition of superoxide became apparent at higher cell densities. Mediators which could be released by PMNs, such as NO and adenosine, were not the cause of inhibition. Thesedatu suggest that mutual contact of PMNs suppresses their generation of superoxide. Survival rates of PMNs after stimulation increased at higher densities, indicating that the mutual contact-induced inhibition of superoxide generation by PMNs may be physiologically relevant at sites of inflammation.  相似文献   

12.
G. Bottu 《Luminescence》1991,6(3):147-151
The chemiluminescence of the system luminol +Fe2+ + H2O2 was measured in aqueous buffer at pH 7.2. In veronal (5,5-diethybarbiturate) buffer, the luminescence is strongly quenched by ethanol and mannitol, but only weakly by t-butanol, benzoate and superoxide dismutase (SOD); complexing Fe2+ with 1,10-phenanthroline or 2,2′-dipyridyl causes a decrease of light production that can be partially obviated by the simultaneous addition of SOD. In phosphate buffer, the luminescence is higher than in veronal and it is efficiently quenched by all four OH · quenchers and by SOD. In Tris buffer, no light production is observed as long as the Fe2+ is not complexed. When Fe2+ is complexed by pyrophosphate or phytate, there is a strong chemiluminescence in all three buffers, which is quenched by all four OH · quenchers and by SOD. When Fe2+ is complexed by EDTA or DTPA, very little luminescence is observed. The luminol analogue phthalhydrazide, which was suggested by Merényi and Lind as a reliable OH · detector, can replace luminol only in phosphate buffer, and thus turns out to be very specific indeed for free OH ·.  相似文献   

13.
Accumulating evidence suggests the concept that epirubicin and lymphokine-activated killer (LAK) cells cytotoxicity may be mediated by free radicals generation and P-glycoprotein-positive (Pg-p+) cancer cells are more sensitive for LAK cells than their drug-sensitive parental lines. We tested this hypothesis further by exposing drug-sensitive (WT) and epirubicin-resistant MCF-7 human breast tumor cells to epirubicin and LAK cells. Subsequently, we monitored cell proliferation as a measure of cytotoxicity. The cytotoxicity of epirubicin, LAK, and LAK + epirubicin (1/10 of IC50) was evaluated in 400-fold epirubicin resistant MCF-7 EPIR (P-glycoprotein overexpressing) and drug-sensitive MCF-7 WT cells. IC50 values were measured using the MTT cytotoxicity test. The MCF-7 EPIR cells exhibited an increased susceptibility to LAK cells than did the MCF-7 WT cells. P-gp+ MCF-7 EPIR cells were lysed by human LAK cells to a greater extend than were their drug-sensitive counterparts. LAK + epirubicin combined treatment increased susceptibility of MCF-7 WT and MCF-7 EPIR cells to LAK cells cytotoxicity. For both cell lines, cytotoxicity was dependent upon the concentration of the epirubicin and effector cell/target cell (E/T) ratio. The resistance of MCF-7 EPIR cells to epirubicin appears to be associated with a developed tolerance to superoxide, most likely because of a tree-fold increase in superoxide dismutase (SOD) activity and 13-fold augmented selenium dependent glutathione peroxidase (GSH-Px) activity. Acting in concert, these two enzymes would decrease the formation of hydroxyl radical from reduced molecular oxygen intermediates. The addition of SOD decreased cytotoxicity of epirubicin and LAK cells. Taken together, these observations support the role of oxygen radicals in the cytotoxicity mechanism of epirubicin and suggest further that the development of resistance to this drug by the MCF-7 EPIR tumor cells may have a component linked to oxygen free radicals. It is proposed that production of reactive oxygen species by the treatment of epirubicin and LAK cells can cause cytotoxicity of MCF-7 WT and MCF-7 EPIR cells. SOD, catalase, GSH-Px, GST (glutathione S-transferase), and GSH (reduced glutathione) must be considered as part of the intracellular antioxidant defense mechanism of MCF-7 WT and MCF-7 EPIR cells against reactive oxygen species.  相似文献   

14.
In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O2) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O2 radicals. In the soluble fractions of peroxisomes, no generation of O2 radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O2 generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.  相似文献   

15.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24 h) in hyperthyroid rats (daily doses of 0.1 mg l -3,3',5-triiodothyronine (T 3 )/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl 3 ; 2 doses of 10 mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical ( O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.-09 generation/SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3 -treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

16.
Indole-3-acetic acid (IAA) is the major natural auxin involved in the regulation of a variety of growth and developmental processes such as division, elongation, and polarity determination in growing plant cells. It has been shown that dividing and/or elongating plant cells accompanies the generation of reactive oxygen species (ROS) and a number of reports have suggested that hormonal actions can be mediated by ROS through ROS-mediated opening of ion channels. Here, we surveyed the link between the action of IAA, oxidative burst, and calcium channel activation in a transgenic cells of rice expressing aequorin in the cytosol. Application of IAA to the cells induced a rapid and transient generation of superoxide which was followed by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). The IAA-induced [Ca2+]c elevation was inhibited by Ca2+ channel blockers and a Ca2+ chelator. Furthermore, ROS scavengers effectively blocked the action of IAA on [Ca2+]c elevation.  相似文献   

17.
Toll like receptor (TLR)4 is a pattern recognition receptor expressed in endothelial and other cells, responsible for the sensing of endotoxin and host derived ligands. Our group has shown previously that the absence of TLR4 is associated with reduced endothelial dependent vasodilator responses and left heart hypertrophy in animal models. However, the mechanism behind reduced endothelial cell function in TLR4−/− mice is not known.We have used en face confocal imaging of mesenteric arteries from mice deficient in the TLR4 receptor stained with dihydroethidium (DHE) to measure superoxide production. Using the isometric wire myograph, mesenteric artery vasodilator responses to acetylcholine and MnCl2 (a superoxide dismutase mimetic) were measured. Mesenteric arteries from TLR4−/− mice had a reduced endothelial dependent relaxant response and increased superoxide levels when stimulated with acetylcholine. Increased levels of superoxide, as detected by DHE staining, were seen in vessels from TLR4−/− mice, which were reduced to control levels in the presence of MnCl2.Our observations suggest that loss of TLR4 increases superoxide generation which reduces the biological activity of endothelial derived nitric oxide and thereby explains the endothelial dysfunction and associated cardiovascular phenotype in TLR4−/− mice. These data implicate a novel cardio-protective role for TLR4 in vascular homeostasis.  相似文献   

18.
Summary. The objective of this study was to determine the dose as well as duration of exposure-dependent effects of L-alanyl-L-glutamine, arginine or taurine on polymorphonuclear neutrophil (PMN) free α-keto acid profiles and, in a parallel study, on PMN immune functions. Exogenous L-alanyl-L-glutamine significantly increased PMN α-ketoglutarate, pyruvate PMN superoxide anion (O2) generation, hydrogen peroxide (H2O2) formation and released myeloperoxidase (MPO) activity. Arginine also led to significant increases in α-ketoglutarate, pyruvate, MPO release and H2O2 generation. Formation of O2 on the other hand was decreased by arginine. Incubation with taurine resulted in lower intracellular pyruvate and α-ketobutyrate levels, decreased O2 and H2O2 formation and a concomitant significantly increased MPO activity. We therefore believe that considerable changes in PMN free-α-keto-acid profiles, induced for example by L-alanyl-L-glutamine, arginine or taurine, may be one of the determinants in cell nutrition that considerably modulates the immunological competence of PMN.  相似文献   

19.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

20.
The effect of the brassinosteroids (BS) 24-epibrassinolide and 24-epicastasterone on the thermoresistance of wheat coleoptiles (Triticum aestivum L.) and their generation of the superoxide anion radical and antioxidant enzymes activity were investigated. The treatment of coleoptiles with 10 nM solutions of BS caused a transient increase in O 2 ⊙? generation and a subsequent increase in the activity of superoxide dismutase and catalase and an improvement in heat resistance. Pretreatment of coleoptiles with the NADPH oxidase inhibitor imidazole leveled the increase in production of the superoxide anion radical and prevented an increase in the activity of antioxidant enzymes and the development of cell thermostability. The investigated effects of BS were also depressed by the pretreatment of coleoptile segments with extracellular calcium chelator EGTA and inhibitor of ADP-ribosyl cyclase nicotinamide. A conclusion was made about the participation of calcium ions and reactive oxygen species generated by the action of NADPH oxidase in the implementation of the stress-protective effect of the BS in the cells of wheat coleoptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号