首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.Abbreviations EDTA ethylenediaminetetraacetic acid - HMBA 2-hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - HSS high speed supernatant - KMBA 2-oxo-4-methylthiobutyric acid - PCS phase combining system  相似文献   

2.
3.
J S Williams  P R Rosevear 《Biochemistry》1991,30(26):6412-6416
The Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) was shown to catalyze alpha-carbon hydrogen-deuterium exchange of L-selenomethionine, L-methionine, L-ethionine, and L-norleucine in the presence of deuterium oxide. The rate of alpha-proton exchange for L-methionine was shown to be linear with respect to delta MTS concentration. The exchange reaction showed saturation kinetics with apparent Km values of 21 and 4 mM in the absence and presence of saturating adenosine concentrations, respectively. As expected, delta MTS did not catalyze alpha-proton exchange of D-methionine since the enzyme has been shown to be specific for L-amino acids. In the absence of enzyme or in the presence of an equivalent concentration of Zn2+, no hydrogen-deuterium exchange was detected. The exchange reaction was not observed with L-methioninol, an analogue of L-methionine lacking the carboxylate group. These results suggest that the alpha-carboxylate group is a requirement for the delta MTS-catalyzed exchange reaction. The E. coli methionyl-tRNA synthetase (MTS) has previously been shown to be a zinc metalloprotein [Posorske, L. H., Cohn, M., Yanagisawa, N., & Auld, D. S. (1979) Biochim. Biophys. Acta 576, 128]. On the basis of the structural and mechanistic information available on MTS, we propose that the enzyme-bound zinc coordinates the carboxylate of the amino acid, while a base on the enzyme is responsible for exchange of the alpha-proton. The role of the enzyme-bound metal is to render the alpha-proton more acidic through coordination of the carboxylate group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Mannitol kinase in cell-free extracts of Escherichia coli   总被引:1,自引:0,他引:1  
  相似文献   

5.
Isoaspartyl dipeptidase (IAD) is a member of the amidohydrolase superfamily and catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. Structural studies of the wild-type enzyme have demonstrated that the active site consists of a binuclear metal center positioned at the C-terminal end of a (beta/alpha)(8)-barrel domain. Steady-state kinetic parameters for the hydrolysis of beta-aspartyl dipeptides were obtained at pH 8.1. The pH-rate profiles for the hydrolysis of beta-Asp-Leu were obtained for the Zn/Zn-, Co/Co-, Ni/Ni-, and Cd/Cd-substituted forms of IAD. Bell-shaped profiles were observed for k(cat) and k(cat)/K(m) as a function of pH for all four metal-substituted forms. The pK(a) of the group that must be unprotonated for catalytic activity varied according to the specific metal ion bound in the active site, whereas the pK(a) of the group that must be protonated for catalytic activity was relatively independent of the specific metal ion present. The identity of the group that must be unprotonated for catalytic activity was consistent with the hydroxide that bridges the two divalent cations of the binuclear metal center. The identity of the group that must be protonated for activity was consistent with the free alpha-amino group of the dipeptide substrate. Kinetic constants were obtained for the mutant enzymes at conserved residues Glu77, Tyr137, Arg169, Arg233, Asp285, and Ser289. The catalytic properties of the wild-type and mutant enzymes, coupled with the X-ray crystal structure of the D285N mutant complexed with beta-Asp-His, are consistent with a chemical reaction mechanism for the hydrolysis of dipeptides that is initiated by the polarization of the amide bond via complexation to the beta-metal ion of the binuclear metal center. Nucleophilic attack by the bridging hydroxide is facilitated by abstraction of its proton by the side chain carboxylate of Asp285. Collapse of the tetrahedral intermediate and cleavage of the carbon-nitrogen bond occur with donation of a proton from the protonated form of Asp285.  相似文献   

6.
D-biotin-d-sulfoxide can fulfill the growth requirement for E. coli mutants deficient in biotin biosynthesis. In vitro reduction of D-biotin-d-sulfoxide to biotin requires a protein cell-free extract and NADPH. Preliminary experiments suggest that more than one protein participates in the reaction.  相似文献   

7.
8.
Esterification of inorganic phosphate accompanies the oxidation of succinic acid by cell-free extracts of E. coli. Inorganic phosphate appears to be an essential requirement for the dehydrogenation of the C4-dicarboxylic acid.  相似文献   

9.
10.
Trinucleotide repeat expansions cause 17 heritable human neurological disorders. In some diseases, somatic expansions occur in non-proliferating tissues such as brain where DNA replication is limited. This finding stimulated significant interest in replication-independent expansion mechanisms. Aberrant DNA repair is a likely source, based in part on mouse studies showing that somatic expansions are provoked by the DNA repair protein MutSβ (Msh2-Msh3 complex). Biochemical studies to date used cell-free extracts or purified DNA repair proteins to yield partial reactions at triplet repeats. The findings included expansions on one strand but not the other, or processing of DNA hairpin structures thought to be important intermediates in the expansion process. However, it has been difficult to recapitulate complete expansions in vitro, and the biochemical role of MutSβ remains controversial. Here, we use a novel in vitro assay to show that human cell-free extracts catalyze expansions and contractions of trinucleotide repeats without the requirement for DNA replication. The extract promotes a size range of expansions that is similar to certain diseases, and triplet repeat length and sequence govern expansions in vitro as in vivo. MutSβ stimulates expansions in the extract, consistent with aberrant repair of endogenous DNA damage as a source of expansions. Overall, this biochemical system retains the key characteristics of somatic expansions in humans and mice, suggesting that this important mutagenic process can be restored in the test tube.  相似文献   

11.
12.
13.
A N Lane  K Kirschner 《Biochemistry》1991,30(2):479-484
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan.  相似文献   

14.
We constructed the plasmid pTTB151 in which the E. coli bioB gene was expressed under the control of the tac promoter. Conversion of dethiobiotin to biotin was demonstrated in cell-free extracts of E. coli carrying this plasmid. The requirements for this biotin-forming reaction included fructose-1,6-bisphosphate, Fe2+, S-adenosyl-L-methionine, NADPH, and KCl, as well as dethiobiotin as the substrate. The enzymes were partially purified from cell-free extracts by a procedure involving ammonium sulfate fractionation. Our results suggest that an unidentified enzyme(s) besides the bioB gene product is obligatory for the conversion of dethiobiotin to biotin.  相似文献   

15.
16.
It was shown that RNA-polymerase is able to discriminate diastereoisomers of 5'-methyl-substituted analogs of ribonucleoside triphosphates (rNTP). Under conditions of soil substrate reactions when the analog is added to the presynthesized ternary complexes, D-allo- and L-talo-stereoisomers incorporate into RNA 100 and 1000 times, respectively, less effectively, then the natural rNTP. The effectivities of incorporation of other 2'- and 3'-substituted analogs of rNTP were measured under the same conditions and compared with that for 5'-Me-rNTP. It was shown also that RNA-polymerase does not support long-chain RNA synthesis from 5'-Me-rNTP in the absence of natural rNTP. No more then two analog residues can be attached to the 3'-end of the presynthesized RNA under such conditions. Addition of one natural rNTP to this reaction mixture results in the synthesis of long alternating RNA containing D-allo-stereoisomer and natural rNTP residues. In the case of L-talo-stereoisomer RNA elongation is not inhibited, if the distance between the analog residues in the RNA chain is not shorter then five nucleotide residues. The rate of pyrophosphorolysis from the RNA of the analogs studied was the same as for the natural rNTP residues.  相似文献   

17.
The covalently attached AMP moiety of adenylylated glutamine synthetase from Escherichia coli has been replaced by its fluorescent analog, 2-aza-1,N6-etheno-AMP (aza-epsilon-AMP). The modified glutamine synthetase (aza-epsilon-GS) exhibits divalent cation requirement (Mn2+, rather than Mg2+), pH profile, Vmax, and Km similar to those of naturally adenylylated glutamine synthetase. Whereas naturally adenylylated glutamine synthetase exhibits only negligible fluorescence changes upon the binding of substrates, aza-epsilon-GS exhibits large fluorescence changes. The fluorescence changes have been used by means of a stopped flow technique to reveal the involvement of five fluorometrically distinct intermediates in the catalytic cycle for the biosynthesis of glutamine catalyzed by the adenylylated glutamine synthetase. The mechanism is very similar to that previously established for the unadenylylated enzyme, using intrinsic tryptophan fluorescence. Substrates bind via a rapid equilibrium random mechanism, but the reaction proceeds in a stepwise manner. The formation of an enzyme-bound intermediate (probably gamma-glutamyl phosphate + ADP) from ATP and L-glutamate is the rate-limiting step, with the subsequent reaction of the enzyme-bound intermediate occurring very rapidly. The success in elucidating this complex mechanism is due largely to the vastly different amplitudes of the fluorescence changes at the two excitation maxima (300 nm and 360 nm) of the aza-epsilon-AMP moiety which accompany the formation of the various intermediates.  相似文献   

18.
DNA helicase I, encoded on the Escherichia coli F plasmid, catalyzes a site- and strand-specific nicking reaction within the F plasmid origin of transfer (oriT) to initiate conjugative DNA strand transfer. The product of the nicking reaction contains a single phosphodiester bond interruption as determined by single-nucleotide resolution mapping of both sides of the nick site. This analysis has demonstrated that the nick is located at precisely the same site previously shown to be nicked in vivo (T. L. Thompson, M. B. Centola, and R. C. Deonier, J. Mol. Biol. 207:505-512, 1989). In addition, studies with two oriT point mutants have confirmed the specificity of the in vitro reaction. Characterization of the nicked DNA product has revealed a modified 5' end and a 3' OH available for extension by E. coli DNA polymerase I. Precipitation of nicked DNA with cold KCl in the presence of sodium dodecyl sulfate suggests the existence of protein covalently attached to the nicked DNA molecule. The covalent nature of this interaction has been directly demonstrated by transfer of radiolabeled phosphate from DNA to protein. On the basis of these results, we propose that helicase I becomes covalently bound to the 5' end of the nicked DNA strand as part of the reaction mechanism for phosphodiester bond cleavage. A model is presented to suggest how helicase I could nick the F plasmid at oriT and subsequently unwind the duplex DNA to provide single-stranded DNA for strand transfer during bacterial conjugation.  相似文献   

19.
20.
An examination has been made into the nature of the nucleoprotein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease when acting on a pyrimidine dimer-containing fd RF-I DNA species. The complexes of proteins and DNA form in unique stages. The first stage of binding involves an ATP-stimulated interaction of the UvrA protein with duplex DNA containing pyrimidine dimer sites. The UvrB protein significantly stabilizes the UvrA-pyrimidine dimer containing DNA complex which, in turn, provides a foundation for the binding of UvrC to activate the UvrABC endonuclease. The binding of one molecule of UvrC to each UvrAB-damaged DNA complex is needed to catalyze incision in the vicinity of pyrimidine dimer sites. The UvrABC-DNA complex persists after the incision event suggesting that the lack of UvrABC turnover may be linked to other activities in the excision-repair pathway beyond the initial incision reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号