首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.  相似文献   

2.
Escherichia coli is used extensively in the production of proteins within biotechnology for a number of therapeutic applications. Here, we discuss the production and overexpression of the potential biopharmaceutical human thioredoxin protein (rhTRX) within E. coli. Overexpression of foreign molecules within the cell can put an enormous amount of stress on the translation machinery. This can lead to a misfiring in the construction of a protein resulting in populations differing slightly in amino acid composition. Whilst this may still result in a population of active molecules being expressed, it does present significant problems with molecules that are destined for clinical applications. Amino acid misincorporation of this subset could potentially result in antibodies being raised to these unnatural proteins. Cross-reaction with a patient's endogenous thioredoxin could then lead to an autoimmune phenomena and serious health implications. Generally, the issue of misincorporation appears not to be a routine regulatory concern (see ICH Q6B guidelines). Therefore, amino acid misincorporation may not have been detected, much less explored in the clinic as the occurrence or absence of these random errors is not routinely reported. Using current technologies based on proteomics, the ability to find misincorporation critically depends upon the criteria for matching theoretical and experimental mass spectrometry data. Additionally, isolation and extraction of these mistranslated proteins from the production process is both difficult and expensive. Therefore, it is advantageous to find routes for removing their production during the upstream phase. In this study, we show how modern proteomic technology can be used to identify and quantify amino acid misincorporation. Using these techniques we have shown how manipulation of gene sequence and scoping of fermentation media composition can lead to the reduction and elimination of these misincorporations in rhTRX.  相似文献   

3.
Mutagenesis was demonstrable after delayed photoreversal of UV-irradiated strains carrying a recA deletion indicating that RecA protein is not essential for the misincorporation process that is revealed by delayed photoreversal. Moreover, the data suggest that RecA protein actually depresses misincorporation to varying extents depending on the recA allele. No delayed photoreversal was demonstrable in reA1 or recA56 bacteria unless the lexA102(ind-) allele was also present. It is suggested that the level of these RecA proteins may be lower in the lexA102(ind-) strains thus minimising their depressive effect. Delayed photoreversal mutagenesis in strains carrying the recA441 allele was not affected by either adenine or guanosine plus cytidine, substances which affect the proteolytic activity of RecA441 protein.  相似文献   

4.
R Holliday 《Gerontologia》1975,21(1):64-68
A major prediction of Orgel's theory is that the misincorporation of amino acids into proteins will increase with age. This has not yet been tested experimentally. Indirect methods have been used to search for the presence of altered proteins in ageing cells or organisms, but these would not necessarily detect a low level of mistakes, nor do they distinquish between errors in synthesis and post-synthetic changes. Nevertheless, some experimental results have been obtained from genetic and biochemical studies with fungi and fibroblasts which confirm certain predictions of the protein error theory.  相似文献   

5.
6.
In Gram‐negative bacteria, β‐barrel proteins are integrated into the outer membrane by the β‐barrel assembly machinery, with key components of the machinery being the Omp85 family members BamA and TamA. Recent crystal structures and cryo‐electron microscopy show a diverse set of secretion pores in Gram‐negative bacteria, with α‐helix (Wza and GspD) or β‐strand (CsgG) transmembrane segments in the outer membrane. We developed assays to measure the assembly of three distinct secretion pores that mediate protein (GspD), curli fibre (CsgG) and capsular polysaccharide (Wza) secretion by bacteria and show that depletion of BamA and TamA does not diminish the assembly of Wza, GspD or CsgG. Like the well characterised pilotins for GspD and other secretins, small periplasmic proteins enhance the assembly of the CsgG β‐barrel. We discuss a model for integral protein assembly into the bacterial outer membrane, focusing on the commonalities and differences in the assembly of Wza, GspD and CsgG.  相似文献   

7.
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.  相似文献   

8.
Our abilities to predict three-dimensional conformation of a polypeptide, given its amino acid sequence, remain limited despite advances in structure analysis. Analysis of structures and sequences of protein families with similar secondary structural elements, but varying topologies, might help in addressing this problem. We have studied the small beta-barrel class of proteins characterized by four strands (n = 4) and a shear number of 8 (S = 8) to understand the principles of barrel formation. Multiple alignments of the various protein sequences were generated for the analysis. Positional entropy, as a measure of residue conservation, indicated conservation of non-polar residues at the core positions. The presence of a type II beta-turn among the various barrel proteins considered was another strikingly invariant feature. A conserved glycyl-aspartyl dipeptide at the beta-turn appeared to be important in guiding the protein sequence into the barrel fold. Molecular dynamics simulations of the type II beta-turn peptide suggested that aspartate is a key residue in the folding of the protein sequence into the barrel. Our study suggests that the conserved type II beta-turn and the non-polar residues in the barrel core are crucial for the folding of the protein's primary sequence into the beta-barrel conformation.  相似文献   

9.
Comparison of the misreading induced by streptomycin and neomycin   总被引:2,自引:0,他引:2  
In a poly(U)-programmed translation system, neomycin stimulates the misincorporation of tyrosine and of serine which, according to Thompson and Stone (Thompson, R.C. and Stone, P.J. (1977) Proc. Natl. Acad. Sci. USA. 74, 198-202), are normally rejected at an initial discrimination step during the binding of charged tRNAs to the ribosome. In contrast, streptomycin favors the misincorporation of isoleucine which is normally rejected at a subsequent GTP-dependent discrimination step, the so-called proofreading step. The labeling of the ribosome with N-ethylmaleimide mimics the effect of streptomycin in that it stimulates the misincorporation of isoleucine but not of tyrosine or serine. This effect is correlated with the labeling of protein S18 but not with that of protein S1. These observations indicate that the sulfhydryl group of protein S18 is located within a ribosomal domain involved in the proofreading control of tRNA selection. Taking into account our previous results that streptomycin and neomycin perturb ribosomal areas around the sulfhydryl groups of proteins S18 and S1, respectively, we suggest that these antibiotics induce misreading by different mechanisms which are linked to such perturbations.  相似文献   

10.
The folding mechanisms for β-barrel membrane proteins present unique challenges because acquisition of both secondary and tertiary structure is coupled with insertion into the bilayer. For the porins in Escherichia coli outer membrane, the assembly pathway also includes association into homotrimers. We study the folding pathway for purified LamB protein in detergent and observe extreme hysteresis in unfolding and refolding, as indicated by the shift in intrinsic fluorescence. The strong hysteresis is not seen in unfolding and refolding a mutant LamB protein lacking the disulfide bond, as it unfolds at much lower denaturant concentrations than wild type LamB protein. The disulfide bond is proposed to stabilize the structure of LamB protein by clasping together the two sides of Loop 1 as it lines the inner cavity of the barrel. In addition we find that low pH promotes dissociation of the LamB trimer to folded monomers, which run at about one third the size of the native trimer during SDS PAGE and are much more resistant to trypsin than the unfolded protein. We postulate the loss at low pH of two salt bridges between Loop 2 of the neighboring subunit and the inner wall of the monomer barrel destabilizes the quaternary structure.  相似文献   

11.
12.
Autotransporters are a large superfamily of cell surface proteins produced by Gram‐negative bacteria that consist of an N‐terminal extracellular domain (‘passenger domain’) and a C‐terminal β‐barrel domain that resides in the outer membrane (OM). Although it was originally proposed that the passenger domain is translocated across the OM through a channel formed exclusively by the covalently linked β‐barrel domain, this idea has been strongly challenged by a variety of observations. Recent experimental results have suggested a new model in which both the translocation of the passenger domain and the membrane integration of the β‐barrel domain are facilitated by the Bam complex, a highly conserved heteroligomer that plays a general role in OM protein assembly. Other factors, including periplasmic chaperones and inner membrane proteins, have also recently been implicated in the biogenesis of at least some members of the autotransporter superfamily. New results have raised intriguing questions about the energetics of the secretion reaction and the relationship between the assembly of autotransporters and the assembly of other classes of OM proteins. Concomitantly, new mechanistic and structural insights have expanded the utility of the autotransporter pathway for the surface display of heterologous peptides and proteins of interest.  相似文献   

13.
Little is known on how β‐barrel proteins are assembled in the outer membrane (OM) of Gram‐negative bacteria. SurA has been proposed to be the primary chaperone escorting the bulk mass of OM proteins across the periplasm. However, the impact of SurA deletion on the global OM proteome has not been determined, limiting therefore our understanding of the function of SurA. By using a differential proteomics approach based on 2‐D LC‐MSn, we compared the relative abundance of 64 OM proteins, including 23 β‐barrel proteins, in wild‐type and surA strains. Unexpectedly, we found that the loss of SurA affects the abundance of eight β‐barrel proteins. Of all the decreased proteins, FhuA and LptD are the only two for which the decreased protein abundance cannot be attributed, at least in part, to decreased mRNA levels in the surA strain. In the case of LptD, an essential protein involved in OM biogenesis, our data support a role for SurA in the assembly of this protein and suggest that LptD is a true SurA substrate. Based on our results, we propose a revised model in which only a subset of OM proteins depends on SurA for proper folding and insertion in the OM.  相似文献   

14.
The mitochondrial outer membrane contains two protein translocators: the TOM40 and TOB/SAM complexes. Mdm10 is distributed in the TOB complex for β‐barrel protein assembly and in the MMM1 complex for tethering of the endoplasmic reticulum and mitochondria. Here, we establish a system in which the Mdm10 level in the TOB complex—but not in the MMM1 complex—is altered to analyse its part in β‐barrel protein assembly. A decrease in the Mdm10 level results in accumulation of in vitro imported Tom40, which is a β‐barrel protein, at the level of the TOB complex. An increase in the Mdm10 level inhibits association not only of Tom40 but also of other β‐barrel proteins with the TOB complex. These results show that Mdm10 regulates the timing of release of unassembled Tom40 from the TOB complex, to facilitate its coordinated assembly into the TOM40 complex.  相似文献   

15.
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.  相似文献   

16.
We have determined the crystal structure of a novel regulatory protein (MGP-40) from the mammary gland. This protein is implicated as a protective signaling factor that determines which cells are to survive the drastic tissue remodeling that occurs during involution. It has been indicated that certain cancers could surreptitiously utilize the proposed normal protective signaling by proteins of this family to extend their own survival and thereby allow them to invade the organ and metastasize. In view of this, MGP-40 could form an important target for rational structure-based drug design against breast cancer. It is a single chain, glycosylated protein with a molecular mass of 40 kDa. It was isolated from goat dry secretions and has been cloned and sequenced. It was crystallized by microdialysis from 20 mg ml(-1) solution in 0.1 m Tris-HCl, pH 8.0, and equilibrated against the same solution containing 19% ethanol. Its x-ray structure has been determined by molecular replacement and refined to a 2.9 A resolution. The protein adopts a beta/alpha domain structure with a triose-phosphate isomerase barrel conformation in the core and a small alpha+beta folding domain. A single glycosylation site containing two N-acetylglucosamine units has been observed in the structure. Compared with chitinases and chitinase-like proteins the most important mutation in this protein pertains to a change from Glu to Leu at position 119, which is part of the so-called active site sequence in the form of Asp(115), Leu(119), and Asp(186) and in this case resulting in the loss of chitinase activity. The orientations of two Trp residues Trp(78) and Trp(331) in the beta barrel reduces the free space, drastically impairing the binding of saccharides/polysaccharides. However, the site and mode of binding of this protein to cell surface receptors are not yet known.  相似文献   

17.
Misincorporation of amino acids in proteins expressed in Escherichia coli has been well documented but not in proteins expressed in mammalian cells under normal recombinant protein production conditions. Here we report for the first time that Ser can be incorporated at Asn positions in proteins expressed in Chinese hamster ovary cells. This misincorporation was discovered as a result of intact mass measurement, peptide mapping analysis, and tandem mass spectroscopy sequencing. Our analyses showed that the substitution was not related to specific protein molecules or DNA codons and was not site-specific. We believe that the incorporation of Ser at sites coded for Asn was due to mischarging of tRNAAsn rather than to codon misreading. The rationale for substitution of Asn by Ser and not by other amino acids is also discussed. Further investigation indicated that the substitution was due to the starvation for Asn in the cell culture medium and that the substitution could be limited by using the Asn-rich feed. These observations demonstrate that the quality of expressed proteins should be closely monitored when altering cell culture conditions.  相似文献   

18.
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.  相似文献   

19.
The suppression of stop codons (termed translational readthrough) can be caused by a decreased accuracy of translation elongation or a reduced efficiency of translation termination. In previous studies, the inability to determine the extent to which each of these distinct processes contributes to a readthrough phenotype has limited our ability to evaluate how defects in the translational machinery influence the overall termination process. Here, we describe the combined use of misincorporation and readthrough reporter systems to determine which of these mechanisms contributes to translational readthrough in Saccharomyces cerevisiae. The misincorporation reporter system was generated by introducing a series of near-cognate mutations into functionally important residues in the firefly luciferase gene. These constructs allowed us to monitor the incidence of elongation errors by monitoring the level of firefly luciferase activity from a mutant allele inactivated by a single missense mutation. In this system, an increase in luciferase activity should reflect an increased level of misincorporation of the wild-type amino acid that provides an estimate of the overall fidelity of translation elongation. Surprisingly, we found that growth in the presence of paromomycin stimulated luciferase activity for only a small subset of the mutant proteins examined. This suggests that the ability of this aminoglycoside to induce elongation errors is limited to a subset of near-cognate mismatches. We also found that a similar bias in near-cognate misreading could be induced by the expression of a mutant form of ribosomal protein (r-protein) S9B or by depletion of r-protein L12. We used this misincorporation reporter in conjunction with a readthrough reporter system to show that alterations at different regions of the ribosome influence elongation fidelity and termination efficiency to different extents.  相似文献   

20.
High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases - Dpo4 and Klenow exo(-) - obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+) with a misincorporation rate gain of ~2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+) and Mg(2+) change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号