首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Cobra venom factor (CVF) is the complement-activating protein from cobra venom. It is a structural and functional analog of complement component C3. CVF functionally resembles C3b, the activated form of C3. Like C3b, CVF binds factor B, which is subsequently cleaved by factor D to form the bimolecular complex CVF,Bb. CVF,Bb is a C3/C5 convertase that cleaves both complement components C3 and C5. CVF is a three-chain protein that structurally resembles the C3b degradation product C3c, which is unable to form a C3/C5 convertase. Both C3 and CVF are synthesized as single-chain prepro-proteins. This study reports the recombinant expression of pro-CVF in two insect cell expression systems (baculovirus-infected Sf9 Spodoptera frugiperda cells and stably transfected S2 Drosophila melanogaster cells). In both expression systems pro-CVF is synthesized initially as a single-chain pro-CVF molecule that is subsequently proteolytically processed into a two-chain form of pro-CVF that structurally resembles C3. The C3-like form of pro-CVF can be further proteolytically processed into another two-chain form of pro-CVF that structurally resembles C3b. Unexpectedly, all three forms of pro-CVF exhibit functional activity of mature, natural CVF. Recombinant pro-CVF supports the activation of factor B in the presence of factor D and Mg2+ and depletes serum complement activity like natural CVF. The bimolecular convertase pro-CVF,Bb exhibits both C3 cleaving and C5 cleaving activity. The activity of pro-CVF and the resulting C3/C5 convertase is indistinguishable from CVF and the CVF,Bb convertase. The ability to produce active forms of pro-CVF recombinantly ensures the continued availability of an important research reagent for complement depletion because cobra venom as the source for natural CVF will be increasingly difficult to obtain as the Indian cobra is on the list of endangered species. Experimental systems to express pro-CVF recombinantly will also be invaluable for studies to delineate the structure and function relationship of CVF and its differences from C3 as well as to generate human C3 derivatives with CVF-like function for therapeutic complement depletion ("humanized CVF").  相似文献   

2.
The presence of a factor immunologically related to cobra venom factor (CVF) was demonstrated in serum and plasma from the Indian cobra (Naja naja kaoutia). The factor was purified from cobra plasma by affinity chromatography on an anti-CVF gel and was found to consist of a protein composed of two polypeptide chains similar in size to those of human C3. With use of immunoblotting technique, common antigenic determinants were found in the smaller chain of the prepared material and the beta-chain of human C3; the larger chain may display antigenic determinants present in the alpha-chain of human C3. These findings suggest that this molecule represents the C3 of the cobra complement system. Common antigenic determinants were also demonstrated in the alpha-chain of CVF and the beta-chains of human and cobra C3. No reactions were observed between the beta- and gamma-chains of CVF and any antiserum against human C3 or its subunits. Upon immunodiffusion analysis, cobra serum was found to contain a factor besides C3 sharing antigens specific for CVF, while cobra C3 was antigenically deficient compared to CVF. This suggests that cobra C3 physiologically is degraded to a molecule very similar to or identical with CVF.  相似文献   

3.
Primary structure of cobra complement component C3.   总被引:4,自引:0,他引:4  
Complement component C3 is a multifunctional protein known to interact specifically with more than 10 different plasma proteins or cell surface receptors. Cobra venom contains cobra venom factor, a structural analogue of C3 that shares some properties with C3 (e.g., formation of a C3/C5 convertase) but differs in others (e.g., susceptibility to regulation by factors H and I). The elucidation of structural differences between C3 and cobra venom factor can be expected to help identify functionally important regions of C3 molecules. To that end we have undertaken the molecular cloning of both cobra C3 and cobra venom factor to take advantage of the unique biologic system where both proteins are produced by the same species. We report the primary structure of cobra C3 mRNA and the derived protein structure. Cobra C3 mRNA is 5211 bp in length. It contains an open reading frame of 4953 bp coding for a single pre-pro-C3 molecule, consisting of a 22-amino acid signal sequence, a 633-amino acid beta-chain (70 kDa), and a 992-amino acid alpha-chain (112 kDa) which is separated from the beta-chain by four arginine residues. There are no N-glycosylation sites in cobra C3. Cobra C3 exhibits approximately 58% nucleotide sequence identity with C3 from mammalian species. At the protein level, sequence identity is approximately 52% and sequence similarity approximately 71%. All 27 cysteine residues are highly conserved as are the C3 convertase cleavage site, the thioester site, and the factor B binding site. Cobra C3 also seems to have homologous binding sites for factor H and properdin, as well as a conserved sequence in the functionally important region of the C3a anaphylatoxin. The sequence homology at the CR2 and CR3 binding sites does not exceed the overall sequence homology. Accordingly, the existence of CR2 and CR3 binding sites can neither be deduced nor excluded.  相似文献   

4.
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.  相似文献   

5.
As tools to study structural relationships of cobra venom factor (CVF) and human complement component C3, murine monoclonal antibodies to CVF were produced. In this paper we describe two of these monoclonal anti-CVF antibodies designated GV1.8 and GV1.10, both of which bind to carbohydrate epitopes. On immunoblotting, antibody GV1.8 binds to both the alpha- and beta-chains of CVF, whereas antibody GV1.10 binds only to the alpha-chain of CVF. After enzymatic deglycosylation of CVF with N-glycanase (peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase), both antibodies lose their ability to bind to the deglycosylated protein. Additionally, the free oligosaccharide chains of CVF are able to inhibit the binding of antibodies GV1.8 and GV1.10 to CVF on enzyme-linked immunosorbent assay, further demonstrating their carbohydrate specificity. Both monoclonal antibodies to CVF cross-react with human C3. Antibody GV1.8 binds to both chains of human C3 indicating that the shared antigenic epitope present on the two glycosylated chains of CVF is also present on the two chains of human C3. Antibody GV1.10 cross-reacts only with the beta-chain of human C3 which is the homologous chain to the alpha-chain of CVF. After enzymatic deglycosylation of human C3 by N-glycanase, both antibodies lose their ability to bind to the deglycosylated protein consistent with the carbohydrate nature of the recognized epitopes. These results indicate that CVF and human C3 share carbohydrate epitopes on their homologous and nonhomologous chains.  相似文献   

6.
The generation of two cleavage products of human C3, termed C3o and C3p, by incubation with a C3-cleaving protease isolated from cobra venom (Naja naja siamensis) is described. The venom protease removes the C3p fragment (Mr approximately 33,000) from the C3dg region of the C3 alpha-chain. The major cleavage fragment C3o (Mr approximately 140,000) contains the unaltered beta-chain of C3 and two alpha-chain-derived polypeptides of Mr approximately 29,000 and Mr approximately 38,000, respectively. Amino-terminal amino acids sequence analysis of C3p and the three chains of C3o allowed the identification of the exact location of the two alpha-chain-derived fragments of C3o and the three cleavage sites of the venom protease. The chain structure of C3o resembles those of C3c and cobra venom factor. In contrast to C3c but like cobra venom factor (and C3b), C3o was found to support the activation of the serine protease Factor B by cleavage in the presence of Factor D and Mg2+ into Bb and Ba, generating an enzymatically active complex that is able to cleave a fluorogenic peptide substrate for C3 convertases. Since the only stretch of amino acid residues of C3o not present in C3c is the carboxyl terminus of the Mr approximately 29,000 chain of C3o, it is suggested that this region is important for the interaction with Factor B and convertase formation.  相似文献   

7.
Complement acts as a danger‐sensing system in the innate immune system, and its activation initiates a strong inflammatory response and cleavage of the proteins C3 and C5 by proteolytic enzymes, the convertases. These contain a non‐catalytic substrate contacting subunit (C3b or C4b) in complex with a protease subunit (Bb or C2a). We determined the crystal structures of the C3b homologue cobra venom factor (CVF) in complex with C5, and in complex with C5 and the inhibitor SSL7 at 4.3 Å resolution. The structures reveal a parallel two‐point attachment between C5 and CVF, where the presence of SSL7 only slightly affects the C5–CVF interface, explaining the IgA dependence for SSL7‐mediated inhibition of C5 cleavage. CVF functions as a relatively rigid binding scaffold inducing a conformational change in C5, which positions its cleavage site in proximity to the serine protease Bb. A general model for substrate recognition by the convertases is presented based on the C5–CVF and C3b–Bb–SCIN structures. Prior knowledge concerning interactions between the endogenous convertases and their substrates is rationalized by this model.  相似文献   

8.
中华眼镜蛇蛇毒经DEAE-Sepharose CL-6B。HPLC等多次柱层析分离出有抗补体及溶血活性的眼镜蛇蛇毒因子(Cobra venom factor,CVF),纯化后的CVF在聚丙烯酰胺凝胶电泳图谱上呈单一区带,分子量为225000—230000,等电点为6.20。用二硫苏糖醇还原经SDS-聚丙烯酰胺凝胶电泳得三类亚基,其分子量总和为237,000。 体外抗补体及溶血试验表明,CVF的作用是通过补体旁路途经使总补体活力下降。双向免疫电泳鉴定,发现CVF与人血清作用后,其中补体成分C_3分子的抗原性发生改变,则表明CVF的作用是通过激活补体成分C_3而发挥的。给豚鼠腹腔注射CVF(0.15ug/g体重)后,其血清总补体水平下降到正常值的3%以下,7天后回升,13天后恢复到正常水平。 单相免疫电泳表明,CVF与人补体C_3抗血清间无任何交叉免疫反应,但人血清与CVF抗血清间有微弱的免疫沉淀反应。另外,CVF的氨基酸组成与人补体C_3也较为相似。鉴定还表明眼镜蛇科中四种蛇毒与CVF抗血清有强烈的免疫沉淀反应,蝰蛇毒及海蛇毒也有免疫沉淀反应,但只有眼镜蛇毒具有抗补体活性。  相似文献   

9.
Cobra venom factor (CVF) depletes the complement system of the blood by forming stable convertase C3/C5 of the alternative pathway. We found that CVF from the Thailand cobra venom slows down the growth of subcutaneous Ehrlich carcinoma (EC) in mice at a dose of 1.7 nmol/g. Previously, we described a similar effect for the nerve growth factor (NGF) from the venom of this cobra. However, these factors did not exhibit either synergy or additive effect. On the contrary, they neutralized the antitumor effect of each other when they were administered simultaneously. Therefore, on the one hand, the NGF antitumor effect against EC manifests itself under the conditions of inflammation, and normal functioning of the complement system is necessary for this effect to occur. On the other hand, suppression of the humoral immune system leads to a slowdown of the EC growth, but administration of NGF prevents this.  相似文献   

10.
The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.  相似文献   

11.
The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit.  相似文献   

12.
Six minor protein constituents (S4C10-S4C15) have been isolated from the venom of Naja melanoleuca. The complete amino acid sequence of S4C11 has been established and indicates that it is a homologue of the neurotoxins which are found in elapid venoms. The other proteins appear from the amino acid compositions to be homologues of the cyto- or cardiotoxins found in cobra venoms. Protein S4C11 has a low toxicity, failing to kill mice at an intravenous dose of 20 mug/g body weight. The sequence of the first 25 residues out of the total of 65, was determined using the automatic sequenator. The remainder of the sequence was derived with the aid of tryptic and chymotryptic peptides. The sequence showed the unusual feature of having 65 amino acid residues including 10 half-cystine residues.  相似文献   

13.
We examined the ability of human monocytes and culture-derived macrophages under serum-free conditions to phagocytose desialated sheep erythrocytes (E), an activator of the alternative pathway of human complement. Freshly derived monocytes ingested desialated erythrocytes, but the degree of phagocytosis varied among individual donors. However, exposing the phagocyte to intact plasma fibronectin (Fn) had no effect on monocyte phagocytosis. Macrophages derived from monocytes in culture were far more efficient at ingesting desialated E, and the extent of phagocytosis was proportional to the degree of desialation. Although exposure of macrophages to substrate-bound Fn or fluid-phase Fn enhanced the phagocytosis of desialated E, pretreatment of desialated E with Fn did not enhance phagocytosis, demonstrating that Fn acted through an interaction with the macrophages. Fn-enhanced phagocytosis of desialated E was inhibited by treating macrophages with a monoclonal antibody to the C4b/C3b receptor (CR1), but not with a monoclonal antibody to the receptor for C3bi (CR3). Addition of cobra venom factor (CVF) to the macrophages also inhibited Fn-enhanced phagocytosis of desialated E. Phagocytosis of IgG-sensitized E, either in the absence or in the presence of Fn, was not significantly affected by anti-CR1 or CVF, demonstrating that these reagents did not lead to a general inhibition of phagocytosis. These experiments suggest that macrophages may deposit enough C3b onto desialated E to cause CR1-mediated phagocytosis in the presence of Fn. The ability of macrophages to opsonize and ingest foreign particles that activate complement may be critically important in areas of inflammation where concentrations of serum-derived specific opsonins may be inadequate.  相似文献   

14.
Immune protection by the complement system critically depends on assembly of C3 convertases on the surface of pathogens and altered host cells. These short‐lived protease complexes are formed through pro‐convertases, which for the alternative pathway consist of the complement component C3b and the pro‐enzyme factor B (FB). Here, we present the crystal structure at 2.2‐Å resolution, small‐angle X‐ray scattering and electron microscopy (EM) data of the pro‐convertase formed by human FB and cobra venom factor (CVF), a potent homologue of C3b that generates more stable convertases. FB is loaded onto CVF through its pro‐peptide Ba segment by specific contacts, which explain the specificity for the homologous C3b over the native C3 and inactive products iC3b and C3c. The protease segment Bb binds the carboxy terminus of CVF through the metal‐ion dependent adhesion site of the Von Willebrand factor A‐type domain. A possible dynamic equilibrium between a ‘loading’ and ‘activation’ state of the pro‐convertase may explain the observed difference between the crystal structure of CVFB and the EM structure of C3bB. These insights into formation of convertases provide a basis for further development of complement therapeutics.  相似文献   

15.
The properties of two anticomplementic factors isolated by CM-Sepharose chromatography from the basic non-adsorbed on DEAE-Sepharose fraction of the Central Asian cobra Naja naja oxiana venom, were studied. Of these three factors (CFB-I, CFB-II and CFB-III) the latter had been characterized earlier. CFB-I was shown to be a protein with an N-terminal Asp and a molecular mass of about 39 kDa (data from gel chromatography); its content in the venom is 3.6 mg/g of dry venom. The protein inhibits mainly the classical pathway of the complement activation, being bound to component C4 (Ki = 9 nM). CFB-I seems to be analogous to the CI inhibitor from the venom of the Naja haje cobra. An analysis of the N-terminal sequence of CFB-II showed it to be identical to the earlier characterized cytotoxin I. CFB-I inhibits the formation of C3 convertase with Ki = 2.2-2.8 microM by way of binding to C4b and thus interfering with the component C2 sorption.  相似文献   

16.
本文采用日立835-50型氨基酸自动分析仪测定了广东眼镜蛇蛇毒与眼镜王蛇蛇毒的氨基酸成分,结果表明两种蛇毒的氨基酸组成基本相同,但多种氨基酸的含量存在明显差异,为蛇毒鉴别和质控提供实验依据。  相似文献   

17.
A cytotoxin-like basic protein has been isolated from the venom of the nominate race of cobra (Naja naja naja from Pakistan) by a single step of high-performance liquid chromatography. The primary structure was determined and consists of 62 amino acid residues in a single polypeptide chain. It is highly similar to that of the cytotoxin-like basic proteins isolated from other Naja species, but differs in two of the SS-loop structures from that of cytotoxins.  相似文献   

18.
The fragments that result from the inactivation of C3b have not been completely characterized. Initial inactivation is catalyzed by the protease factor I, which, in the presence of its cofactor (factor H), cleaves two peptide bonds in the alpha'-chain of C3b. This results in the release of a small peptide (C3f, Mr 3000) from iC3b, which consists of the C3 beta chain covalently bonded to two alpha'-chain-derived peptides (Mr 68,000 and Mr 43,000). Surface-bound iC3b is cleaved at a third site by factor I to produce C3c and C3d,g (or alpha 2D). The factor I cofactor for this cleavage is the C3b receptor that is present on erythrocyte and leukocyte membranes. This report describes the isolation and initial structural characterization of C3c and C3d,g generated in whole blood after complement activation with cobra venom factor. These fragments were compared with the C3 fragments isolated from the serum and plasma of a patient with complement activation in vivo. The fragments were isolated with two solid phase monoclonal antibodies, one of which recognizes a determinant on C3g (clone 9) and one of which recognizes a determinant on C3c (clone 4). C3c isolated from normal blood showed three polypeptides that had apparent m.w. of 75,000, 43,000, and 27,000. The C3d,g consisted of a single polypeptide chain with a m.w. of 40,000. Amino terminal sequence analysis showed that the Mr 27,000 peptide from C3c is derived from the amino terminal portion of the alpha'-chain of C3b, whereas the Mr 43,000 peptide is derived from the carboxy terminus of the same chain. Amino terminal sequence analysis showed also that C3g is derived from the amino terminus of C3d,g. The C3 fragments isolated from a patient with partial lipodystrophy, nephritic factor activity, low serum C3 levels, and circulating C3 cleavage products showed a more complicated pattern on SDS-PAGE. The fragment isolated with clone 9 had an apparent m.w. of 40,000, identical to C3d,g generated in vitro, and it had the same amino terminal sequence as C3d,g generated in vitro. The eluate from insolubilized clone 4, however, showed prominent bands with Mr of 75,000, 56,000, 43,000, and 27,000, together with a triple-banded pattern at 68,000 and a minor band at 80,000. This eluate thus appears to contain C3c, and iC3b or an iC3b-like product. The origin of the Mr 56,000 and Mr 80,000 peptides have not yet been determined. These studies, with previous data, definitively order the C3c and C3d,g peptides in the alpha-chain of C3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
从广西产眼镜王蛇(Ophiophagus hannah)毒腺中抽提总RNA,经mRNA纯化后构建眼镜王蛇毒腺cDNA文库。从所构建的cDNA文库中,随机筛选200个克隆测序,得到两个在进化上高度保守的基因:泛素融合蛋白基因(GenBank登录号为AF297036)和核糖体蛋白L30基因(GenBank登录号是AF297033)。前者cDNA的开放阅读框为387bp,后者为348bp。前者编码128个氨基酸残基组成的泛素融合蛋白前体;后者编码115个氨基酸残基组成的核糖体蛋白L30前体。由cDNA序列推导出的氨基酸序列分析表明,泛素融合蛋白前体包括N-末端的泛素结构域(76个氨基酸残基)和C-末端的核糖体蛋白L40结构域(52个氨基酸残基)。该蛋白为一高碱性蛋白,C末端含有一个“锌指”模式结构。与16个物种比较的结果表明,眼镜王蛇与脊椎动物的泛素融合蛋白氨基酸序列相似度较高,具有高度的保守性。  相似文献   

20.
Previous studies focused on indels in the complement C345 protein family identified a number of potential protein-protein interaction sites in components C3 and C5. Here, one of these sites in C5, near the alpha-chain C terminus, was examined by alanine-scanning mutagenesis at 16 of the 18 non-alanine residues in the sequence KEALQIKYNFSF RYIYPLD. Alanine substitutions affected activities in the highly variable manner characteristic of binding sites. Substitutions at the lysine or either phenylalanine residue in the central KYNFSF sequence had the greatest effects, yielding mutants with <20% of the normal activity. These three mutants were also resistant to the classical pathway (CP) C5 convertase, with sensitivities roughly proportional to their hemolytic activities, but had normal susceptibilities to the cobra venom factor (CVF)-dependent convertase. Synthetic peptide MGKEALQIKYNFS-NH2 was found similarly to inhibit CP but not CVF convertase activation, and the effects of alanine substitutions in this peptide largely reflected those of the equivalent mutations in C5. These results indicate that residues KYNFSF form a novel, distal binding site for the CP, but not CVF convertase. This site lies approximately 880 residues downstream of the convertase cleavage site within a module that has been independently named C345C and NTR; this module is found in diverse proteins including netrins and tissue inhibitors of metalloproteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号