首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a potent anti-angiogenic factor and induces endothelial cell apoptosis, although the mechanism remains unclear. In this study, 15d-PGJ(2) was found to increase p53 levels of the human umbilical vein endothelial cells by stabilizing p53. Both 15d-PGJ(2)-induced apoptosis and the induction of p21(Waf1) and Bax can be abolished by p53 small interfering RNA but not by peroxisome proliferator-activated receptor gamma inhibitors. Moreover, 15d-PGJ(2) activated JNK and p38 MAPK while inducing p53 phosphorylation at sites responsible for p53 activity. JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) pretreatment attenuated 15d-PGJ(2)-mediated apoptosis and suppressed the p21(Waf1) and Bax expressions without affecting p53 protein accumulation. Pretreatment with SP600125 partially prevented the phosphorylation of p53 at serines 33 and 392 induced by 15d-PGJ(2). 15d-PGJ(2) was also found to induce reactive oxygen species generation and partially blocked nuclear factor-kappaB activity. Pretreatment with antioxidant N-acetylcysteine prevented the p53 accumulation, the phosphorylations of JNK and p38 MAPK, the inhibition of NF-kappaB activity, as well as the apoptosis induced by 15d-PGJ(2). Using a mouse model of corneal neovascularization, it was demonstrated in vivo that 15d-PGJ(2) induced reactive oxygen species generation, activated JNK and p38 MAPK, induced p53 accumulation/phosphorylation, and induced vascular endothelial cell apoptosis, which could be abolished by N-acetylcysteine, SP600125, SB203580, or a virus-derived amphipathic peptides-based p53 small interfering RNA. This is the first study that 15d-PGJ(2) induces vascular endothelial cell apoptosis through the signaling of JNK and p38 MAPK-mediated p53 activation both in vitro and in vivo, further establishing the potential of 15d-PGJ(2) as an anti-angiogenesis agent.  相似文献   

4.
Cyclopentenone prostaglandin 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), which is generated from the dehydration of PGD(2), is a natural ligand of peroxisome proliferator-activated receptor gamma (PPARγ) and a potential apoptotic mediator. The synthetic PPARγ ligands, troglitazone and ciglitazone, inhibit tumor progression in many cells by PPARγ activation, but the mechanism of 15d-PGJ(2) is still unclear. In this study, GW9662, an antagonist of PPARγ, and quercetin, a natural antioxidant, were used to study the apoptotic mechanism of 15d-PGJ(2) in A549 cells. Results showed that 15d-PGJ(2) induced apoptosis, which was associated with the production of reactive oxygen species (ROS) and the decrease of GSH levels. Furthermore, quercetin reduced the activity of caspases in 15d-PGJ(2)-induced apoptotic processes. These results suggest that 15d-PGJ(2) induces apoptosis in A549 cells mainly through the formation of ROS; it does not depend on PPARγ activation. Moreover, these findings support the use of quercetin and PPARγ agonists in non-small cell lung carcinoma.  相似文献   

5.
PPARgamma ligands inhibit growth and induce apoptosis of various cancer cells. 4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation and induces differentiation or apoptosis in neoplastic cells. The aim of this work was to investigate the effects of PPARgamma ligands (rosiglitazone and 15-deoxy-prostaglandin J2 (15d-PGJ2)) and HNE, alone or in association, on proliferation, apoptosis, differentiation, and growth-related and apoptosis-related gene expression in colon cancer cells (CaCo-2 cells). PPARgamma ligands inhibited cell proliferation (IC50 was 37.47+/-6.6 microM, for 15d-PGJ2, and 170.34+/-20 microM for rosiglitazone). HNE (1 microM) inhibited cell growth by 70%. Apoptosis was induced by 15d-PGJ2 and HNE and, to a minor extent, rosiglitazone. Differentiation was induced by rosiglitazone and by 15d-PGJ2, but not by HNE. PPARgamma ligands inhibited c-myc expression. HNE induced a transitory increase in c-myc expression and a subsequent down-regulation. HNE induced p21 expression, whereas PPARgamma ligands did not. Expression of the bax gene was increased by HNE and 15d-PGJ2, but not by rosiglitazone. No synergism or antagonism was found between HNE and PPARgamma ligands. Both apoptosis and differentiation induction may be responsible for the inhibition of proliferation by PPARgamma ligands; apoptosis and c-myc and p21 expression seem to be involved in the inhibition of proliferation by HNE.  相似文献   

6.
Renal cell carcinoma (RCC) is chemoresistant cancer. Although several clinical trials were conducted to explore effective medications, the chemoresistance of RCC has not yet been conquered. An endogenous ligand for peroxisome proliferator-activated receptor-γ (PPARγ), 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), induces apoptosis in RCC. Here, we examined synergistic effects of several carcinostatics on the anti-tumor activity of 15d-PGJ(2) in Caki-2 cell line by MTT assay. A topoisomerase-I inhibitor, camptothecin (CPT), exhibited synergistically toxicity with 15d-PGJ(2), but neither 5-fluorouracil nor cisplatin did. The combination of 15d-PGJ(2) and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. The synergistic effect of topoisomerase-I and II inhibitors was not also detected. A PPARγ antagonist, GW9662, did not prevent Caki-2 from undergoing 15d-PGJ(2)-induced cytotoxicity. The treatment of CPT combined with 15d-PGJ(2) activated caspase-3 more than the separate treatment. These results suggest that 15d-PGJ(2) exhibited the anti-tumor activity synergistically with CPT independent of topoisomerase-II and PPARγ.  相似文献   

7.
8.
Wung BS  Wu CC  Hsu MC  Hsieh CW 《Life sciences》2006,78(26):3035-3042
In this study, the effects of 15d-PGJ(2) were investigated in IL-6-activated endothelial cells (ECs). 15d-PGJ(2) was found to abrogate phosphorylation on tyr705 of STAT3 in IL-6-treated ECs, in a dose- and time-dependent manner, but did not inhibit serine phosphorylation of STAT3 and the upperstream JAK2 phosphorylation. Other PPAR activators, such as WY1643 or ciglitazone, had no effect upon IL-6-induced STAT3 phosphorylation. Additionally, neither orthovanadate nor l-NAME treatment reverses the inhibition of STAT3 phosphorylation by 15d-PGJ(2). Otherwise, the effect of 15d-PGJ(2) requires the alpha,beta-unsaturated carbonyl group in the cyclopentane ring. A 15d-PGJ(2) analog, 9,10-Dihydro-15d-PGJ(2), which lack alpha,beta-unsaturated carbonyl group showed no increase in ROS production and no effect in inhibition of IL-6-induced STAT3 phosphorylation. The electrophilic compound, acrolein, mimics the inhibition effect of 15d-PGJ(2). Among the antioxidants, only NAC and glutathione reversed the effects of 15d-PGJ(2). NAC, glutathione and DTT all reversed the inhibition of STAT3 phosphorylation when preincubated with 15d-PGJ(2). The inhibition of ICAM-1 gene expression by 15d-PGJ(2) was abrogated by NAC and glutathione in IL-6-treated ECs. Taken together, these results suggest that 15d-PGJ(2) inhibits IL-6-stimulated phosphorylation on tyr705 of STAT3 dependent on its own electrophilic reactivity in ECs.  相似文献   

9.
A natural ligand of peroxisome proliferator-activated receptor gamma (PPARgamma), 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ(2)-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ(2) decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPARgamma with no effect on mRNA levels. Although 15d-PGJ(2) elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ(2) induced HSP70 in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ(2) increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ(2) is related to HSP70 induction.  相似文献   

10.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-12,14-PGJ2 (15d-PGJ2), have been proposed as a new class of anti-inflammatory compounds because 15d-PGJ2 was able to inhibit the induction of inflammatory response genes such as inducible NO synthase (iNOS) and TNF (TNF-alpha) in a PPAR-dependent manner in various cell types. In primary astrocytes, the anti-inflammatory effects (inhibition of TNF-alpha, IL-1beta, IL-6, and iNOS gene expression) of 15d-PGJ2 are observed to be independent of PPARgamma. Overexpression (wild-type and dominant-negative forms) of PPARgamma and its antagonist (GW9662) did not alter the 15d-PGJ2-induced inhibition of LPS/IFN-gamma-mediated iNOS and NF-kappaB activation. The 15d-PGJ2 inhibited the inflammatory response by inhibiting IkappaB kinase activity, which leads to the inhibition of degradation of IkappaB and nuclear translocation of p65, thereby regulating the NF-kappaB pathway. Moreover, 15d-PGJ2 also inhibited the LPS/IFN-gamma-induced PI3K-Akt pathway. The 15d-PGJ2 inhibited the recruitment of p300 by NF-kappaB (p65) and down-regulated the p300-mediated induction of iNOS and NF-kappaB luciferase reporter activity. Coexpression of constitutive active Akt and PI3K (p110) reversed the 15d-PGJ2-mediated inhibition of p300-induced iNOS and NF-kappaB luciferase activity. This study demonstrates that 15d-PGJ2 suppresses inflammatory response by inhibiting NF-kappaB signaling at multiple steps as well as by inhibiting the PI3K/Akt pathway independent of PPARgamma in primary astrocytes.  相似文献   

11.
Monocytes/macrophages link the innate and adaptive immune systems, and in inflammatory disorders their activation leads to tissue damage. 15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has garnered much interest because it possesses anti-inflammatory properties in a number of experimental models. However, whether it regulates monocytes/macrophage pathophysiology is still unknown. This study was designed to examine the effects of 15d-PGJ(2) on the phagocytosis, proliferation and inflammatory cytokines generation in mouse monocyte/macrophage cell line RAW264.7 and J774A.1 cells upon lipopolysaccharide challenge. Our results showed that 15d-PGJ(2) inhibited the phagocytic activity and cell proliferation in a dose-dependent manner, and suppressed proinflammatory cytokines expression, such as tumor necrosis factor-α, transforming growth factor-β1, interleukin-6, and monocyte chemotactic protein-1. These effects were independent of PPARγ, because PPARγ agonist (troglitazone or ciglitazone) and PPARγ antagonist (GW9662) did not affect these activities mentioned above in cells. Treatment of 15d-PGJ(2) also did not modulate expression and distribution of PPARγ. However, these effects of 15d-PGJ(2) were abrogated by antioxidant N-acetylcysteine. Moreover, treatment of 15d-PGJ(2) induced a significant increase in reactive oxygen species production in RAW264.7 and J774A.1 cells. In conclusion, 15d-PGJ(2) attenuates the biological activities of mouse monocyte/macrophage cell line cells involving oxidative stress, independently of PPARγ. These data further underline the anti-inflammation potential of 15d-PGJ(2).  相似文献   

12.
Prostaglandin D(2) (PGD(2)), a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield electrophilic PGs, such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We have previously shown that 15d-PGJ(2) potently induces apoptosis of SH-SY5Y human neuroblastoma cells via accumulation of the tumor suppressor gene product p53. In the study presented here, we investigated the molecular mechanisms involved in the 15d-PGJ(2)-induced accumulation of p53. It was observed that 15d-PGJ(2) potently induced p53 protein expression but scarcely induced p53 gene expression. In addition, exposure of the cells to 15d-PGJ(2) resulted in an accumulation of ubiquitinated proteins and in a significant inhibition of proteasome activities, suggesting that 15d-PGJ(2) acted on the ubiquitin-proteasome pathway, a regulatory mechanism of p53 turnover. The effects of 15d-PGJ(2) on the protein turnover were attributed to its electrophilic feature, based on the observations that (i) the reduction of the double bond in the cyclopentenone ring of 15d-PGJ(2) virtually abolished the effects on protein turnover, (ii) overexpression of an endogenous redox regulator, thioredoxin 1, significantly retarded the inhibition of proteasome activities and accumulations of p53 and ubiquitinated proteins induced by 15d-PGJ(2), and (iii) treatment of SH-SY5Y cells with biotinylated 15d-PGJ(2) indeed resulted in the formation of a 15d-PGJ(2)-proteasome conjugate. These data suggest that the modulation of proteasome activity may be involved in the mechanism responsible for the accumulation of p53 and subsequent induction of apoptotic cell death induced by 15d-PGJ(2).  相似文献   

13.
The common commercial use of phthalate esters has resulted in significant human exposure to these bioactive compounds. The facts that phthalate ester metabolites, like endogenous PGs, are peroxisome proliferator-activated receptor (PPAR) agonists, and that PPARgamma agonists induce lymphocyte apoptosis suggest that phthalate esters are immunosuppressants that could act together with PGs to modulate early B cell development. In this study we examined the effects of a metabolite of one environmental phthalate, mono(2-ethylhexyl)phthalate (MEHP), and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), on developing B cells. MEHP inhibited [(3)H]thymidine incorporation by primary murine bone marrow B cells and a nontransformed murine pro/pre-B cell line (BU-11). Cotreatment with a retinoid X receptor alpha ligand, 9-cis-retinoic acid, decreased [(3)H]thymidine incorporation synergistically, thereby implicating activation of a PPARgamma-retinoid X receptor alpha complex. These results were similar to those obtained with the natural PPARgamma ligand 15d-PGJ(2). At moderate MEHP concentrations (25 or 100 microM for primary pro-B cells and a pro/pre-B cell line, respectively), inhibition of [(3)H]thymidine incorporation resulted primarily from apoptosis induction, whereas at lower concentrations, the inhibition probably reflected growth arrest without apoptosis. Cotreatment of bone marrow B cells with 15d-PGJ(2) and MEHP significantly enhanced the inhibition of [(3)H]thymidine incorporation seen with MEHP alone, potentially mimicking exposure in the bone marrow microenvironment where PG concentrations are high. Finally, MEHP- and 15d-PGJ(2)-induced death does not result from a decrease in NF-kappaB activation. These data demonstrate that environmental phthalates can cooperate with an endogenous ligand, 15d-PGJ(2), to inhibit proliferation of and induce apoptosis in developing bone marrow B cells, potentially via PPARgamma activation.  相似文献   

14.
Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth. To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested. Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G2/M arrest and inhibited tumor cell migration. Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency.  相似文献   

15.
Ligands of peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) are thought to possess anti-inflammatory properties mediated via both PPAR(gamma) dependent and independent mechanisms. This work investigates the effects of PPAR(gamma) ligands on the regulation of cyclooxygenase-2 (COX-2) in the human lung epithelial cell line, A549. The synthetic ligand troglitazone activated the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase pathway (MAPK), whereas the endogenous ligand, 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), only activated the PI3K pathway. 15d-PGJ2 had no detectable effects on COX-2, mPGES expression, or PGE2 production. However, troglitazone induced time-dependent COX-2 expression, which was insensitive to PPAR(gamma) antagonists, but was abrogated by inhibitors of PI3K and the ERK MAP kinase pathway. Furthermore, troglitazone induced mPGES expression and PGE2 production. Neither troglitazone nor 15d-PGJ2 was able to convincingly activate NF-kappaB in A549 cells. Further heterogeneity in the responses to troglitazone and 15d-PGJ2 was observed in the regulation of gene expression as assessed by microarray analysis. In summary, this study provides compelling evidence that troglitazone (like 15d-PGJ2) can exert functional effects independently of actions via PPAR(gamma). Moreover, we have identified unique biochemical and functional actions of troglitazone that are not shared by 15d-PGJ2, which may influence the therapeutic potential of this compound in inflammatory settings.  相似文献   

16.
17.
18.
Recent studies have demonstrated that bone marrow stromal cells can undergo adipogenesis or osteoblastogenesis in vivo, and in vitro, and that peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a central role in the control of adipocyte differentiation. In the present study, we treated a murine stromal cell line (TMS-14) with a cocktail of dexamethasone, insulin and glucose (DIG cocktail), which caused the cells to convert to fat-laden cells with adipocyte-like morphology. We also exposed TMS-14 cells to DIG cocktail followed by 15-deoxy Delta(12,14)-prostaglandin J2 (15d-PGJ2), a ligand of PPAR gamma, interleukin- 11 (IL-11), 9-cis retinoic acid (9-cis RA) and vitamin K2. 15d-PGJ2 enhanced DIG cocktail-induced adipogenesis, whereas IL-11, 9-cis RA and vitamin K2 each inhibited adipogenesis induced by DIG cocktail. The gene expressions of four adipogenesis markers, PPAR gamma 2, adipocyte P2 (aP2), adipocyte determination and differentiation factor 1 (ADD1), and fatty acid synthase (FAS) were enhanced by DIG cocktail and these expressions were more enhanced by 15d-PGJ2, in contrast they were attenuated by 9-cis RA. IL-11 also attenuated the adipogenesis markers except ADD1. Western blotting showed that 15d-PGJ2 enhanced the levels of PPAR gamma, C/EBP alpha and RXR alpha proteins, while IL-11 and 9-cis RA decreased the level of PPAR gamma protein, but not C/EBP alpha protein and vitamin K2 decreased the level of C/EBP alpha protein. We also tested the effect of 15d-PGJ2 on osteoblastogenesis, using TMS-12 cells, another stromal cell clone from the same mouse, which differentiate into osteoblasts spontaneously. 15d-PGJ2 did not affect osteoblastogenesis, as detected by von Kossa staining and Cbfa-1 gene expression. These data indicate that 15d-PGJ2 enhances the expression of both PPAR gamma and C/EBP alpha and as a result it stimulates adipogenesis in murine bone marrow cells.  相似文献   

19.
In human coronary artery vascular smooth muscle (hcaVSM) cells, the mechanisms that mediate the antiproliferative effects of ligands for the peroxisome proliferator-activated receptor-γ (PPARγ) and the retinoid X receptor-α (RXRα) are unclear. Dimerization of PPARγ with RXRα and occupancy by both ligands is required for maximal activation. Accordingly, we determined whether the antiproliferative activity of the PPARγ ligands, troglitazone or 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2), was enhanced with the RXRα ligand, 9-cis-retinoic acid (9-cis-RA). Incubation of actively proliferating hcaVSM cells with either troglitazone or 15d-PGJ2 resulted in a dose-dependent inhibition of proliferation with half-maximal inhibitory concentrations (IC50s) of 13 and 2 μM, respectively. Quiescent cells incubated with troglitazone or 15d-PGJ2 and subsequently stimulated with PDGF-BB showed a concentration-dependent decrease in the active form of MAP kinase, suggesting that inhibition of cell growth by troglitazone may involve the MAP kinase pathway, an important growth activation pathway in VSM cells. Incubation of cells with either 0.1 or 1.0 μM 9-cis-RA inhibited cell growth to a similar degree. Addition of troglitazone or 15d-PGJ2 to cells in combination with either concentration of 9-cis-RA resulted in a striking increase in growth inhibition, and was accompanied by an approximately 4-fold reduction in the IC50s for both PPARγ ligands. These findings imply that RXRα activation by 9-cis-RA synergistically enhanced inhibition of hcaVSM cell growth. The precise nature of this cooperative interaction between PPARγ and RXRα remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号