首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amylases which produce maltotriose as the major end-product from starch are relatively rare. The thermophilic actinomycete, Thermomonospora fusca, produced an extracellular -amylase which generated maltotriose as 61% of the identified products. The addition of maltotriose to a glucose-adapted exponential phase culture at 55°C in mineral salts medium caused rapid induction of amylase biosynthesis. Addition of glucose to cells growing on starch did not repress amylase biosynthesis because the actinomycete had a marked preference for maltotriose over glucose. The pH and temperature optima for the amylase activity of concentrated, washed extracellular protein were 6.0 and 65°C, respectively, with an energy of activation of 59kJ/mol. The thermostability of the concentrated, washed amylase was increased by the presence of its starch reaction products, but not by added Ca2+.  相似文献   

3.
The cellulases of Streptomyces thermodiastaticus (strain 2Sts) and thermomonospora fusca (strain 190Th) were produced with carboxymethyl-cellulose (CMC) serving as the carbon source during growth. Both cellulases act by random internal hydrolysis of the CMC chain, producing cellobiose, glucose, and intermediate length oligosaccharides. Cellobiase was not detected in culture filtrates produced under these conditions.  相似文献   

4.
Regulation of the biosynthesis of the six cellulases comprising the cellulolytic system of the thermophilic soil bacterium Thermomonospora fusca ER1 was studied. The levels of the individual enzymes produced on different noninducing and inducing carbon sources were determined. The lowest level of cellulase synthesis (3 nM) was observed with xylose as a carbon source, and the highest level (247 to 1,670 nM for different enzymes) was found in cultures grown on microcrystalline cellulose. Endocellulases and exocellulases showed distinctly different regulation patterns. Differences in the regulation of individual enzymes appear to be determined by the specific structural organization of the upstream regulatory sequences of their genes.  相似文献   

5.
Protoplasts were produced from the thermophilic actinomycete Thermomonospora fusca and were regenerated to 0.1% of the direct count on regeneration agar. Recombination after protoplast fusion was demonstrated with drug-resistant mutants of T. fusca YX. A single thiostrepton-resistant colony was isolated after transformation of T. fusca YX with the streptomycete vector pIJ702, providing the first evidence for transformation in the genus Thermomonospora and suggesting that some mesophilic streptomycete genes can be expressed in thermophilic actinomycetes. Of 20 thermophilic actinomycete strains isolated from self-heated composts, 3 were found to harbor native plasmid DNA, providing potential sequences for the development of Thermomonospora-Streptomyces shuttle vectors.  相似文献   

6.
In Thermomonospora fusca YX, endocellulase synthesis varies over a 100-fold range depending on the carbon source used. This study shows that the variation is caused by two regulatory mechanisms: an induction mechanism that increases the rate of endocellulase synthesis about 20-fold and a growth rate-dependent repression mechanism that changes the rate of synthesis over a 6-fold range in both induced and noninduced cells. In T. fusca, endocellulase synthesis can be induced by cellulose, cellobiose, or cellodextrin. Cellulase is involved in inducer generation from cellulose. Growth rate-dependent repression can be reversed by limiting cultures for carbon, nitrogen, or, to a lesser extent, phosphorus. Further evidence for two separate regulatory mechanisms is provided by the isolation of mutants (CC-1 and CC-2) whose endocellulases are synthesized constitutively but are still sensitive to growth rate-dependent repression. These conclusions about total endocellulase synthesis were extended to the individual endocellulases by showing that three T. fusca endocellulases are coordinately regulated.  相似文献   

7.
Production of cutinase by Thermomonospora fusca ATCC 27730   总被引:1,自引:0,他引:1  
Ten strains belonging to various Thermomonospora species were tested for their ability to hydrolyse the insoluble plant polyester cutin. One strain, the thermophile T . fusca ATCC 27730, was found to produce a highly inducible cutinase when grown in broth medium containing purified apple cv. Golden Delicious cutin. Apple pomace, tomato peel, potato suberin and commercial cork were also shown to induce cutinase production. Addition of glucose to the culture medium either at the beginning of fermentation or after 2 days of incubation in the presence of apple cutin led to repression of cutinase production. The cutinase was active against a wide range of cutins, including those isolated from other apple cultivars as well as tomato, cucumber, grapefruit, and green pepper. Cutinase activity in the induced culture supernatant fluids exhibited a half-life of over 60 min at 70 °C and a pH optimum of 11·0. Some potential applications for cutinases are discussed.  相似文献   

8.
A thermostable polygalacturonate lyase (PL; EC 4.2.2.2) was secreted by Thermomonospora fusca during stationary phase in pectin-mineral salts medium at 52 degrees C. Biosynthesis was induced by addition of pectic substances to cultures growing on glucose or cellulose but not cellobiose; the disaccharide repressed enzyme synthesis and triggered inactivation of enzyme previously secreted. The PL, purified to electrophoretic and serologic homogeneity, had a molecular size of 56 kilodaltons and an isoelectric point at pH 4.16. The amino acid composition closely resembled that of the major extracellular endoglucanases of the actinomycete. The enzyme had six cystine residues but no detectable sulfhydryl groups. It was inactivated by mild reducing agents and activated by oxygenation, indicating the necessity for disulfide bond maintenance. Temperature and pH optima for the PL reaction were 60 degrees C and 10.45, respectively. Calcium was essential for activity but not stability; calcium dependence curves were altered by low concentrations of toxic metals. The Km for pectin increased 30,000-fold as the percent esterification (methoxylation) of that substrate was increased from 0 to 60%. The size of the minimal susceptible site for PL attack on the pectin molecule was calculated as being equivalent to 10 unesterified residues, based on the correlation of Km values at various degrees of esterification with the percentage of cleavable bonds predicted by a random-number-generating computer program.  相似文献   

9.
G Lao  D B Wilson 《Applied microbiology》1996,62(11):4256-4259
The major Thermomonospora fusca YX extracellular protease gene (tfpA) was cloned into Escherichia coli and Streptomyces lividans and was sequenced. The open reading frame encoded 375 residues, including a 31-residue potential signal sequence, an N-terminal prosequence containing 150 residues, and the 194-residue mature protease that belongs to the chymotrypsin family. The protease was secreted by S. lividans, but evidence suggested that it was bound to an extracellular protease inhibitor. An inhibitor-deficient mutant was selected to produce protease for purification.  相似文献   

10.
Characterization and sequence of a Thermomonospora fusca xylanase.   总被引:7,自引:2,他引:5       下载免费PDF全文
TfxA is a thermostable xylanase produced by the thermophilic soil bacterium Thermomonospora fusca. The enzyme was purified to homogeneity from the culture supernatant of Streptomyces lividans transformed by plasmid pGG92, which carries the gene for TfxA, xynA. The molecular mass of TfxA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 32 kDa. TfxA is extremely stable, retaining 96% of its activity after 18 h at 75 degrees C. It has a broad pH optimum around pH 7 and retains 80% of its maximum activity between pH 5 and 9. The native enzyme binds strongly to both cellulose and insoluble xylan even though it has no activity on cellulose. Treatment of TfxA with a T. fusca protease produced a 24-kDa catalytically active fragment that had the same N-terminal sequence as TfxA. The fragment does not bind to cellulose and binds weakly to xylan. The Vmax values for TfxA and the fragment are 600 and 540 mumol/min/mg, respectively, while the Kms are 1.1 and 2.3 mg of xylan per ml, respectively. The DNA sequence of the xynA gene was determined, and it contains an open reading frame that codes for a 42-amino-acid (42-aa) actinomycete signal peptide followed by the 32-kDa mature protein. There is a 21-aa Gly-Pro-rich region that separates the catalytic domain from an 86-aa C-terminal binding domain. The amino acid sequence of the catalytic domain of TfxA has from 40 to 72% identity with the sequence of 12 other xylanases from seven different organisms and belongs to family G.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two genes encoding cellulases E1 and E4 from Thermomonospora fusca have been cloned in Escherichia coli, and their DNA sequences have been determined. Both genes were introduced into Streptomyces lividans, and the enzymes were purified from the culture supernatants of transformants. E1 and E4 were expressed 18- and 4-fold higher, respectively, in S. lividans than in E. coli. Thin-layer chromatography of digestion products showed that E1 digests cellotriose, cellotetraose, and cellopentaose to cellobiose and a trace of glucose. E4 is poor at degrading cellotriose and cleaves cellopentaose to cellotetraose and glucose or cellotriose and cellobiose. It readily cleaves cellotetraose to cellobiose. E1 shows 59% identity to Cellulomonas fumi CenC in a 689-amino-acid overlap, and E4 shows 80% identity to the N terminus of C. fimi CenB in a 441-amino-acid overlap; all of these proteins are members of cellulase family E. Alignment of the amino acid sequences of Clostridium thermocellum celD, E1, E4, and four other members of family E demonstrates a clear relationship between their catalytic domains, although there is as little as 25% identity between some of them. Residues in celD that have been identified by site-directed mutagenesis and chemical modification to be important for catalytic activity are conserved in all seven proteins. The catalytic domains of E1 and E4 are not similar to those of T. fusca E2 or E5, but all four enzymes share similar cellulose-binding domains and have the same 14-bp inverted repeat upstream of their initiation codons. This sequence has been identified previously as the binding site for a protein that regulates induction.  相似文献   

12.
The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.  相似文献   

13.
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI to obtain 4- to 14-kilobase fragments, which were used to construct a library of recombinant phage by ligation with EcoRI arms of lambda gtWES. lambda B. A recombinant phage coding for xylanase activity which contained a 14-kilobase insert was identified. The xylanase gene was localized to a 2.1-kilobase SalI fragment of the EcoRI insert by subcloning onto pBR322 and derivatives of pBR322 that can also replicate in Streptomyces lividans. The xylanase activity produced by S. lividans transformants was 10- to 20-fold higher than that produced by Escherichia coli transformants but only one-fourth the level produced by induced T. fusca. A 30-kilodalton peptide with activity against both Remazol brilliant blue xylan and xylan was produced in S. lividans transformants that carried the 2.1-kilobase SalI fragment of T. fusca DNA and was not produced by control transformants. T. fusca cultures were found to contain a xylanase of a similar size that was induced by growth on xylan or Solka Floc. Antiserum directed against supernatant proteins isolated from a Solka Floc-grown T. fusca culture inhibited the xylanase activity of S. lividans transformants. The cloned T. fusca xylanase gene was expressed at about the same level in S. lividans grown in minimal medium containing either glucose, cellobiose, or xylan. The xylanase bound to and hydrolyzed insoluble xylan. The cloned xylanase appeared to be the same as the major protein in xylan-induced T. fusca culture supernatants, which also contained at least three additional minor proteins with xylanase activity and having apparent molecular masses of 43, 23, and 20 kilodaltons.  相似文献   

14.
As much as 84% of the thermostable serine protease from Thermomonospora fusca strain YX was covalently attached to silanized glass using glutaraldehyde. The immobilized protease exhibited a higher temperature optimum (86 degrees C) and pH optimum (9.4) for activity compared to soluble YX-protease (80 degrees C and pH 9.0, respectively). Immobilization improved enzyme thermo-stability above 90 degrees C and reduced inactivation during prolonged storage (9% loss of activity after 90 days at 12 degrees C). A continuous-flow column reactor packed with immobilized protease readily hydrolyzed casein over broad ranges of temperature and pH.  相似文献   

15.
The thermophilic actinomycete Thermomonospora fusca produced endoxylanase, α-arabinofuranosidase, β-xylosidase, and acetyl esterase activities maximally during growth on xylan. Growth yields on glucose, xylose, or arabinose were comparable, but production of endoxylanase and β-xylosidase was not induced on these substrates. The crude xylanase activity was thermostable and relatively resistant to end product inhibition by xylobiose and xylan hydrolysis products. Six proteins with xylanase activity were identified by zymogram analysis of isoelectric focusing gels, but only a 32-kDa protein exhibiting three isomeric forms could be purified by fast protein liquid chromatography. Endoglucanases were also identified in carboxymethylcellulose-grown cultures, and their distinction from endoxylanases was confirmed. α-Arabinofuranosidase activity was due to a single dimeric protein of 92 kDa, which was particularly resistant to end product inhibition by arabinose. Three bands of acetyl esterase activity were detected by zymogram analysis, and there was evidence that these mainly consisted of an intracellular 80-kDa protein secreted to yield active 40-kDa subunits in the culture supernatant. The acetyl esterases were found to be responsible for acetyl xylan esterase activity in T. fusca, in contrast to the distinction proposed in some other systems. The addition of purified βxylosidase to endoxylanase increased the hydrolysis of xylan, probably by relieving end product inhibition. The enhanced saccharification of wheat straw caused by the addition of purified α-arabinofuranosidase to T. fusca endoxylanase suggested a truly synergistic relationship, in agreement with proposals that arabinose side groups on the xylan chain participate in cross-linking within the plant cell wall structure.  相似文献   

16.
The proteinase secreted from Thermomonospora fusca YX grown on cellulose was purified by (NH4)2SO4 fractionation and cation-exchange chromatography. The isolated proteinase readily hydrolysed several proteins and demonstrated activity towards casein from 35 to 95 degrees C (at pH 8.0) with maximum activity at 80 degrees C. It exhibited broad pH and ionic-strength optima centered at pH 9.0 and 0.2 M-NaCl respectively, and it retained high activity in the presence of 2% (w/v) SDS, 20 mM-dithiothreitol and 1.0 M-NaCl. The proteinase, which was fully inhibited by phenylmethanesulphonyl fluoride, had an Mr of 14,500 and an isoelectric point at 9.21. A measurement of proteinase thermal stability demonstrated a T50% (15 min) of 85 degrees C at pH 4.5.  相似文献   

17.
The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains.  相似文献   

18.
Degradation products from the addition of extracellular enzymes from Thermomonospora fusca BD25 to ball-milled wheat straw, oat spelt xylan and solubilised kraft pulps were characterised by HPLC and TLC. Overall, a high percentage hydrolysis of oat spelt xylan (28.9%) occurred after 26 h incubation. However, the rates of hydrolysis of ball-milled wheat straw and kraft pulp were approximately 4-6-fold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate was similar (22.2% and 25.9% respectively). Incubation of kraft pulp and ball-milled wheat straw by crude extracellular enzymes of T. fusca BD25 resulted in the detection of aromatic compounds at concentrations of 0.6 microg ml(-1) and 8.7 microg ml(-1), respectively. Hydrolysis of oat spelt xylan by T. fusca BD25 extracellular enzymes yielded a mixture of xylose, xylotriose and putative substituted-xylotriose, while the products of ball-milled wheat straw hydrolysis were xylose, glucose and a small oligomer present in the digest. The results highlight the ability of culture supernatant from T. fusca to release both simple sugars and aromatic compounds from lignocellulosic substrates and suggest a role for this organism in the biobleaching of pulp.  相似文献   

19.
A cellulase gene from Thermomonospora fusca coding for endocellulase E5 was introduced into Streptomyces lividans by using shuttle plasmids that can replicate in either S. lividans or Escherichia coli. Plasmid DNA isolated from E. coli was used to transform S. lividans, selecting for thiostrepton resistance. The transformants expressed and excreted the endocellulase, but the ability to produce the endocellulase was unstable. This instability was shown to result from deletion of the endocellulase gene from the plasmid. Plasmid DNA prepared from a culture in which plasmid modification had occurred was used to transform E. coli, selecting for Amp+ cells, and all of the transformants were cellulase positive, showing that pBR322 and T. fusca DNA were deleted together. When a plasmid was constructed containing only T. fusca DNA in plasmid pIJ702, the transformants were more stable, and the level of endocellulase activity produced in the culture supernatant after growth on 0.2% glucose was close to the level produced by T. fusca cultures grown on 0.2% cellulose. About 50% of the total protein in the culture supernatant of the S. lividans transformant was endocellulase E5. The enzyme produced by the S. lividans transformant was identical to pure T. fusca E5 in its electrophoretic mobility and was completely inhibited by antiserum to E5. Shuttle plasmids containing the E5 gene that could replicate in Bacillus subtilis and E. coli were also constructed and used to transform B. subtilis. Again there was extensive deletion of the plasmid DNA during transformation and growth in B. subtilis. There was no evidence of E5 activity, even in those B. subtilis transformants that retained the E5 gene.  相似文献   

20.
The production of three extracellular enzymes during the solubilisation of ball-milled wheat straw by seven actinomycete strains, was examined. A general correlation was observed between the production of extracellular enzymes (xylanases, endoglucanases and peroxidases) and the formation of the solubilised lignocellulose intermediate product (APPL), with the thermophilic actinomycete Thermomonospora fusca BD25 exhibiting greatest extracellular enzyme activity and highest APPL production. Production of all three enzymes; endoxylanase, endoglucanase and peroxidase, and lignocellulose solubilisation, occured during primary growth with maximum activity at the end of the exponential phase (48–96 h). The inducibility and stability of extracellular enzymes from T. fusca were further characterised. When xylan replaced ball-milled wheat straw as the growth substrate, reduced enzyme activities were observed (28–96% reduction in enzyme activities), whereas carboxymethylcellulose was found to be a poor inducer of all three enzyme activities (80–100% reduction in enzyme activities). The pH and temperature optima for extracellular enzyme activities from T. fusca was found to be pH 7.0–8.0 and 60°C, respectively. Analysis of concentrated crude supernatant from T. fusca by native polyacrylamide gel electrophoresis revealed the existence of two non-haem peroxidases. The stability of the extracellular lignocellulose-degrading enzymes for T. fusca suggest their suitability for future biotechnological processes such as biobleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号