首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selection of the site for initiation of translation for the Saccharomyces cerevisiae NFS1 gene was examined using mutated AUG1, AUG2 and AUG3 codons. When AUG1 of the yeast NFS1 gene was mutated to UUG and the resulting mRNA was translated in vitro using a reticulocyte system, initiation from the mutated codon was abolished and occurred instead at downstream codons at increased rates. When the same mRNA was translated using a yeast extract, translation initiated at the mutated codon, albeit at a reduced rate, and there was no increased translation at downstream AUG codons. The NFS1 gene in which AUG1 was replaced by UUG was also able to substitute for the wild-type gene in vivo in yeast. Western blots confirmed that the encoded protein was the same size as that encoded by the wild-type gene and that both the wild-type and mutated proteins localized to mitochondria. This is apparently the first example of a yeast protein where mutagenesis of AUG1 does not lead to alternate use of a downstream AUG.  相似文献   

2.
3.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

4.
The quantitative levels of initiation of protein synthesis at codons other than AUG were determined with a CYC7-lacZ fused gene in the yeast Saccharomyces cerevisiae. AUG was the only codon which efficiently initiated translation, although some non-AUG codons allowed initiation at very low efficiency, below 1% of the normal level. Since translation initiates at codons other than AUG in at least two wild-type genes from eucaryotes, other factors presumably play a role in enhancing the activity of non-AUG codons.  相似文献   

5.
A unique genetic selection was devised at the HIS4 locus to address the mechanism of translation initiation in Saccharomyces cerevisiae and to probe sequence requirements at the normal translational initiator region that might participate in ribosomal recognition of the AUG start codon. The first AUG codon at the 5' end of the HIS4 message serves as the start site for translation, and the -3 and +4 nucleotide positions flanking this AUG (AXXAUGG) correspond to a eucaryotic consensus start region. Despite this similarity, direct selection for mutations that reduce or abolish ribosomal recognition of this region does not provide any insight into the functional nature of flanking nucleotides. The only mutations identified that affected recognition of this region were alterations in the AUG start codon. Among 150 spontaneous isolates, 26 were shown to contain mutations in the AUG start codon, including all +1 changes (CUG, GUG, and UUG), all +3 changes (AUA, AUC, and AUU), and one +2 change (ACG). These seven mutations of the AUG start codon, as well as AAG and AGG constructed in vitro, were assayed for their ability to support HIS4 expression. No codon other than AUG is physiologically relevant to translation initiation at HIS4 as determined by growth tests and quantitated in his4-lacZ fusion strains. These data and analysis of other his4 alleles are consistent with a mechanism of initiation at HIS4 as proposed in the scanning model whereby the first AUG codon nearest the 5' end of the message serves as the start site for translation and points to the AUG codon in S. cerevisiae as an important component for ribosomal recognition of the initiator region.  相似文献   

6.
The context requirements for recognition of an initiator codon were evaluated in vitro by monitoring the relative use of two AUG codons that were strategically positioned to produce long (pre-chloramphenicol acetyl transferase [CAT]) and short versions of CAT protein. The yield of pre-CAT initiated from the 5'-proximal AUG codon increased, and synthesis of CAT from the second AUG codon decreased, as sequences flanking the first AUG codon increasingly resembled the eucaryotic consensus sequence. Thus, under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo. Unexpectedly, recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured. This finding adds a new, positive dimension to regulation by mRNA secondary structure, which has been recognized previously as a negative regulator of initiation. Translation of pre-CAT from an AUG codon in a weak context was not preferentially inhibited under conditions of mRNA competition. That result is consistent with the scanning model, which predicts that recognition of the AUG codon is a late event that occurs after the competition-sensitive binding of a 40S ribosome-factor complex to the 5' end of mRNA. Initiation at non-AUG codons was evaluated in vitro and in vivo by introducing appropriate mutations in the CAT and preproinsulin genes. GUG was the most efficient of the six alternative initiator codons tested, but GUG in the optimal context for initiation functioned only 3 to 5% as efficiently as AUG. Initiation at non-AUG codons was artifactually enhanced in vitro at supraoptimal concentrations of magnesium.  相似文献   

7.
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.  相似文献   

8.
9.
Xia X 《Gene》2005,345(1):13-20
The H-strand of vertebrate mitochondrial DNA is left single-stranded for hours during the slow DNA replication. This facilitates C-->U mutations on the H-strand (and consequently G-->A mutations on the L-strand) via spontaneous deamination which occurs much more frequently on single-stranded than on double-stranded DNA. For the 12 coding sequences (CDS) collinear with the L-strand, NNY synonymous codon families (where N stands for any of the four nucleotides and Y stands for either C or U) end mostly with C, and NNR and NNN codon families (where R stands for either A or G) end mostly with A. For the lone ND6 gene on the other strand, the codon bias is the opposite, with NNY codon families ending mostly with U and NNR and NNN codon families ending mostly with G. These patterns are consistent with the strand-specific mutation bias. The codon usage biased towards C-ending and A-ending in the 12 CDS sequences affects the codon-anticodon adaptation. The wobble site of the anticodon is always G for NNY codon families dominated by C-ending codons and U for NNR and NNN codon families dominated by A-ending codons. The only, but consistent, exception is the anticodon of tRNA-Met which consistently has a 5'-CAU-3' anticodon base-pairing with the AUG codon (the translation initiation codon) instead of the more frequent AUA. The observed CAU anticodon (matching AUG) would increase the rate of translation initiation but would reduce the rate of peptide elongation because most methionine codons are AUA, whereas the unobserved UAU anticodon (matching AUA) would increase the elongation rate at the cost of translation initiation rate. The consistent CAU anticodon in tRNA-Met suggests the importance of maximizing the rate of translation initiation.  相似文献   

10.
The secondary structure and sequences influencing the expression and selection of the AUG initiator codon in the yeast Saccharomyces cerevisiae were investigated with two fused genes, which were composed of either the CYC7 or CYC1 leader regions, respectively, linked to the lacZ coding region. In addition, the strains contained the upf1-Δ disruption, which stabilized mRNAs that had premature termination codons, resulting in wild-type levels. The following major conclusions were reached by measuring β-galactosidase activities in yeast strains having integrated single copies of the fused genes with various alterations in the 89 and 38 nucleotide-long untranslated CYC7 and CYC1 leader regions, respectively. The leader region adjacent to the AUG initiator codon was dispensable, but the nucleotide preceding the AUG initiator at position ?3 modified the efficiency of translation by less than twofold, exhibiting an order of preference A>G>C>U. Upstream out-of-frame AUG triplets diminished initiation at the normal site, from essentially complete inhibition to approximately 50% inhibition, depending on the position of the upstream AUG triplet and on the context (?3 position nucleotides) of the two AUG triplets. In this regard, complete inhibition occurred when the upstream and downstream AUG triplets were closer together, and when the upstream and downstream AUG triplets had, respectively, optimal and suboptimal contexts. Thus, leaky scanning occurs in yeast, similar to its occurrence in higher eukaryotes. In contrast, termination codons between two AUG triplets causes reinitiation at the downstream AUG in higher eukaryotes, but not generally in yeast. Our results and the results of others with GCN4 mRNA and its derivatives indicate that reinitiation is not a general phenomenon in yeast, and that special sequences are required.  相似文献   

11.
C U Hellen  T V Pestova    E Wimmer 《Journal of virology》1994,68(10):6312-6322
Initiation of poliovirus translation is mediated by a large, structured segment of the 5' nontranslated region known as the internal ribosome entry site (IRES) and normally occurs 155 nucleotides (nt) downstream of the IRES at AUG743 (the AUG at nucleotide 743). Functional AUG codons introduced at nt 611 or 614 reduced initiation at AUG743 by 10 to 40% in vitro but had no effect on virus phenotype. To investigate the role of the nt 586-743 spacer in greater detail, four intervening termination codons were removed, and an additional AUG triplet at nt 683 was introduced by nucleotide substitution. Initiation at AUG743 was reduced by only 50 to 80%, depending on the number of upstream initiation codons. Initiation at AUG743 was also reduced following insertion of a stable hairpin at nt 630, but the reduction was modest in an ascites carcinoma cell extract. Initiation was more frequent at AUG743 than at AUG683 if mRNAs contained either an upstream initiation codon or the stable hairpin. These results suggested that not all initiation events at AUG743 can be accounted for by a scanning-dependent mechanism. Translation of bicistronic mRNAs in which the intercistronic spacer contained nt 630 to 742 of the poliovirus 5' nontranslated region indicated that these residues are not able to act as an entry point for ribosomes independently of the IRES. Insertion of increasingly longer sequences immediately downstream of the stable hairpin progressively reduced initiation at AUG743 without affecting initiation at AUG683. These results are discussed in terms of a model for initiation of poliovirus translation in which a complex RNA superstructure upstream of nt 586 promotes ribosome binding at an entry point determined by specific downstream cis-acting elements.  相似文献   

12.
The translational roles of the Shine-Dalgarno sequence, the initiation codon, the space between them, and the second codon have been studied. The Shine-Dalgarno sequence UAAGGAGG initiated translation roughly four times more efficiently than did the shorter AAGGA sequence. Each Shine-Dalgarno sequence required a minimum distance to the initiation codon in order to drive translation; spacing, however, could be rather long. Initiation at AUG was more efficient than at GUG or UUG at each spacing examined; initiation at GUG was only slightly better than UUG. Translation was also affected by residues 3' to the initiation codon. The second codon can influence the rate of initiation, with the magnitude depending on the initiation codon. The data are consistent with a simple kinetic model in which a variety of rate constants contribute to the process of translation initiation.  相似文献   

13.
Summary Single nucleotide substitutions identify a UUG triplet as the initiation codon of the lysis gene in RNA bacteriophage fr. This initiation codon is non-functional in de novo initiation but is activated by translational termination at the overlapping coat gene. The UUG initiation codon is crucial for gene regulation in the phage, as it excludes uncontrolled access of ribosomes to the start of the lysis gene. Replacement of UUG by either GUG or AUG results in the loss of genetic control of the lysis gene. A model is presented in which initiation factor IF3 proofreads de novo initiation at UUG codons.  相似文献   

14.
In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.  相似文献   

15.
Stenström CM  Holmgren E  Isaksson LA 《Gene》2001,273(2):259-265
The purine-rich Shine-Dalgarno (SD) sequence located a few bases upstream of the mRNA initiation codon supports translation initiation by complementary binding to the anti-SD in the 16S rRNA, close to its 3' end. AUG is the canonical initiation codon but the weaker UUG and GUG codons are also used for a minority of genes. The codon sequence of the downstream region (DR), including the +2 codon immediately following the initiation codon, is also important for initiation efficiency. We have studied the interplay between these three initiation determinants on gene expression in growing Escherichia coli. One optimal SD sequence (SD(+)) and one lacking any apparent complementarity to the anti-SD in 16S rRNA (SD(-)) were analyzed. The SD(+) and DR sequences affected initiation in a synergistic manner and large differences in the effects were found. The gene expression level associated with the most efficient of these DRs together with SD(-) was comparable to that of other DRs together with SD(+). The otherwise weak initiation codon UUG, but not GUG, was comparable with AUG in strength, if placed in the context of two of the DRs. The +2 codon was one, but not the only, determinant for this unexpectedly high efficiency of UUG.  相似文献   

16.
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.  相似文献   

17.
18.
Sequence of the yeast iso-1-cytochrome c mRNA   总被引:8,自引:0,他引:8  
The nucleotide sequence of the yeast iso-1-cytochrome c (CYC1) mRNA is presented. The mRNA was enriched by hybridization to cloned CYC1 DNA attached to a solid matrix: either nitrocellulose filters or diazobenzyloxymethyl cellulose powder. The sequence of the 5'-end of the mRNA was determined by the extension of a CYC1-specific dodecanucleotide primer; the sequence of the 3'-end was determined using a decanucleotide d(pT8-G-A) primer. The CYC1 mRNA begins 61 nucleotides 5' to the AUG initiation codon, extends through the coding sequence to 172 to 175 nucleotides 3' to the UAA termination codon, followed by the poly(A) tail. There are no intervening sequences. Some of the sequences that the CYC1 mRNA shares in common with other eukaryotic mRNAs are discussed.  相似文献   

19.
The mRNA sequence and structures that modify and are required for translation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae were investigated with sets of CYC1 alleles having alterations in the 5' leader region. Measurements of levels of CYC1 mRNA and iso-1-cytochrome c in strains having single copies of altered alleles with nested deletions led to the conclusion that there is no specific sequence adjacent to the AUG initiator codon required for efficient translation. However, the nucleotides preceding the AUG initiator codon at positions -1 and -3 slightly modified the efficiency of translation to an order of preference similar to that found in higher cells. In contrast to large effects observed in higher eucaryotes, the magnitude of this AUG context effect in S. cerevisiae was only two- to threefold. Furthermore, introduction of hairpin structures in the vicinity of the AUG initiator codon inhibited translation, with the degree of inhibition related to the stability and proximity of the hairpin. These results with S. cerevisiae and published findings on other organisms suggest that translation in S. cerevisiae is more sensitive to secondary structures than is translation in higher eucaryotes.  相似文献   

20.
In the plasmid pUC8ksgA7, the coding region of the ksgA gene is preceded by the lac promoter (Plac) and a small open reading frame (ORF). This ORF of 15 codons is composed of nucleotides derived from the lacZ gene, a multiple cloning site and the ksgA gene itself. The reading frame begins with the ATG initiation codon of lacZ and ends a few nucleotides beyond the ATG start codon of ksgA. The ksgA gene is not preceded by a Shine-Dalgarno (SD) signal. Cells transformed with pUC8ksgA7 produce active methylase, the product of the ksgA gene. Introduction of an in-phase TAA stop codon in the small ORF abolishes methylase production in transformed cells. On the plasmid pUC8ksgA5, which contains the entire ksgA region, the promoter of the ksgA gene was found to reside in a 380 base pair Bgl1-Pvu2 restriction fragment, partly overlapping the ksgA gene, by two independent methods. Cloning of this fragment in front of the galK gene in plasmid pKO1 stimulates galactokinase activity in transformants and its insertion into the expression vector pKL203 makes beta-galactosidase synthesis independent of the presence of Plac. The sequence of the Bgl1-Pvu2 fragment was determined and a putative promoter sequence identified. An SD signal could not be distinguished at a proper distance upstream from the ksgA start codon. Instead, an ORF of 13 codons starting with ATG in tandem with an SD signal and ending 4 codons ahead of the ksgA gene was identified. This suggests that translation of the ORF is required for expression of the ksgA gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号