首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Endocrine cells containing bombesin-, enkephalin-, gastrin/CCK-, 5-HT-, and substance P-like material were demonstrated in the alimentary tract of Poecilia reticulata and Leuciscus idus melanotus. Endocrine cells with neuropeptide-Y-like immunoreactivity were found only in P. reticulata, those with VIP-like immunoreactivity only in L. idus melanotus. Gut nerves showing bombesin-, G/CCK-5-HT-, neurotensin-, substance P-and VIP-like immunoreactivity were observed in both species investigated, enkephalin- and neuropeptide Y-like immunoreactivity in P. reticulata alone. The distribution and amount of endocrine cells and nerves along the gut as visualized with the appropriate antisera varied in both teleosts. Histologically, the intestinal tract of these stomachless fish can be divided into three regions. A large number of endocrine cells with VIP-like immunoreactivity was noted in the rectum of L. idus melanotus. Endocrine cells containing bombesin-, enkepha-lin- and substance P-like material were found only in intestinal parts I and II in L. idus melanotus. Neuropeptide Y-like immunoreactivity was absent from intestinal part I of P. reticulata. The influence of starvation on the immunoreactivity of nerves and enteroendocrine cells in the teleost intestine was examined. After a starvation period of more than 6 weeks, no alterations were observed either in the appearance or amount of nerve and endocrine cell immunoreactivity.  相似文献   

2.
Summary The presence and distribution of bombesin-, enkephalin-, gastrin/cholecystokinin-, neuropeptide Y-, neurotensin-, somatostatin-, substance P-, and VIP-like immunoreactivities in gut nerves of representatives of nineteen cyclostome, elasmobranch and teleost species have been studied.The results have been correlated to results from previous studies in other species. Nerve plexuses showing bombesinlike, substance P-like and VIP-like immunoreactivity are commonly occurring, while other neuropeptides may have a more varied distribution.Tentative evolutionary patterns, and the possible function and importance of each peptide is discussed.  相似文献   

3.
The presence and distribution of bombesin-, enkephalin-, gastrin/cholecystokinin-, neuropeptide Y-, neurotensin-, somatostatin-, substance P-, and VIP-like immunoreactivities in gut nerves of representatives of nineteen cyclostome, elasmobranch and teleost species have been studied. The results have been correlated to results from previous studies in other species. Nerve plexuses showing bombensin-like, substance P-like and VIP-like immunoreactivity are commonly occurring, while other neuropeptides may have a more varied distribution. Tentative evolutionary patterns, and the possible function and importance of each peptide is discussed.  相似文献   

4.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

5.
1. The localization of vasoactive intestinal polypeptide (VIP) in the gastrointestinal tracts of a holostean fish, the bowfin (Amia calva) and a teleostean fish, the bluegill (Lepomis macrochirus) was determined using immunocytochemistry.2. In the bowfin, VIP immunoreactivity was observed in both gut nerves and gastrointestinal endocrine cells. In the bluegill, only gut nerves exhibited VIP-like immunoreactivity.3. The presence of VIP endocrine cells in the gastric mucosa of bowfin appears to be unique among vertebrates. VIP-containing endocrine cells of the open type were seen in cardiac, oxyntic, and antral gastric mucosa. There appeared to be morphological differences in VIP endocrine cell shapes in anterior versus posterior stomach regions. No VIP endocrine cells were observed in bowfin intestine.4. We conclude that VIP may have an endocrine/paracrine regulatory role in the bowfin stomach and may be strictly a neurotransmitter/neuromodulator in the bowfin gut. There are many species differences in the distribution of VIP-like peptides between neurons and endocrine cells in the guts of lower vertebrates, complicating analysis of the neural versus endocrine evolutionary origin of gut VIP.  相似文献   

6.
Summary The presence and distribution of regulatory peptides in nerves and endocrine cells of the stomach, intestine and rectum of a urodele amphibian, the mudpuppy, Necturus maculosus, was studied immunohistochemically in sections or whole-mount preparations of the gut wall. The effect of the occurring peptides on gut motility was studied in isolated strip preparations of circular and longitudinal smooth muscle from different parts of the gut.Bombesin-, neurotensin-, substance P- and VIP-like immunoreactivity was present in abundant nerve fibres in the myenteric plexus of both stomach, intestine and rectum. Single fibres or bundles were present in the circular muscle layer and in a well-developed deep muscular plexus in the intestine and rectum. Immunoreactive nerve cells were found in the myenteric plexus of the stomach, intestine (neurotensin only) and rectum. Gastrin/CCK-like immunoreactivity was observed only in a few fibres in stomach and rectum.Endocrine cells containing bombesin-, met-enkephalin-, gastrin/CCK-, neurotensin-, somatostatin- or substance P- like immunoreactivity were present in the mucosa.The effect of bombesin was an inhibition of the rhythmic activity in circular muscle preparations and in longitudinal muscle from the rectum, while longitudinal muscle from the stomach usually responded with a weak increase in tonus. Neurotensin, like bombesin, was inhibitory on the spontaneous rhythmic activity of circular muscle throughout the gut, while the effect on longitudinal muscle was an increase in tonus. Met-enkephalin and substance P increased the tonus of all types of preparations, and often, in addition, initiated a rhythmic activity superimposed on this maintained tonus. VIP had a general inhibitory effect on the preparations, decreasing tonus and/or abolishing rhythmic activity.It is concluded that bombesin-, neurotensin-, substance P- and VIP-like peptides are present in nerves throughout the urodele gut and may have physiological functions in regulating the motility of the gut. The gastrin/CCK-like peptide present in nerves of the stomach and rectum may affect the function of these parts of the gut. The regulatory peptides present in endocrine cells may, perhaps with the exception of the somatostatin-like peptide, affect the motility humorally.  相似文献   

7.
Summary The presence, distribution and development of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the gastro-entero-pancreatic system of a cartilaginous fish Scyliorhinus stellaris (L.) was investigated by immunohistochemical methods utilizing mammalian VIP antisera. In the gut VIP-like immunoreactivity was observed in both nerves and endocrine cells. Endocrine cells with VIP-like material were only detected in the intestinal epithelium while nerve fibres containing VIP-like material were noted along the whole gastro-entero-pancreatic system, being more numerous in the pyloric sphincter and in the intestinal portion. Immunoreactive nerve cell bodies were encountered in the stomach and intestinal portions localized in the submucosa and in the myenteric plexus. Intestinal immunoreactive endocrine cells were already present in the first developmental stage considered (embryos aged 4 months). They grow in number and before birth reach a frequency higher than in adults. Nerves and cell bodies showing VIP-like immunoreactivity, appear later, before birth, as a few elements in the smooth muscular layer, but only after birth their distribution and frequency are similar to those found in adults. The faint immunofluorescence shown by the immunoreactive endocrine cells and their developmental pattern, which is always different from that observed in nervous elements, suggest the presence of at least two VIP-like substances in the gastro-entero-pancreatic system of S. stellaris.  相似文献   

8.
Summary Histological, cytochemical and immunocytochemical methods were used in light and electron microscopical studies to demonstrate the presence of a neuroendocrine system in the gut of the urodele, Salamandra salamandra.Cytochemical stains capable of detecting peptide-producing endocrine cells demonstrate cells reacting with Masson's silver (argentaffin) method, Grimelius' argyrophil silver method, masked metachromasia method and the lead haematoxylin stain.Using antisera raised to a variety of mammalian gut peptides, cells containing bombesin-, gastrin-, somatostatin-, substance P- and glucagon-like immunoreactivity were identified; vasoactive intestinal polypeptide- and substance P-like immunoreactivities were found in nerve fibres in the submucous and myenteric plexus. No immunoreactivity was detected for motilin, gastric inhibitory polypeptide, cholecystokinin or secretin.The ultrastructure of the immunoreactive cells and nerves was revealed by the semithin/thin method. All the cells identified contained numerous electrondense secretory granules, which varied in their chracteristic morphological structure from one cell type to another.The evidence collected in this study indicates that a complex neuroendocrine system regulating gut function is present in this amphibian and may have developed prior to the emergence of the phylum.  相似文献   

9.
VIP-like immunoreactivity was found in nerve fibres in all layers of the gut wall in both stomach and intestine, and was abundant in the myenteric and submucous plexuses. A few fibres were associated with blood vessels. Nerve cells showing VIP-like immunoreactivity were found in the myenteric plexus. Neurotensin-like immunoreactivity was found in nerve cells and numerous nerve fibres in the myenteric plexus of both stomach and intestine and in nerve fibres of the circular muscle layer, while bombesin-like immunoreactivity was confined to a low number of nerve fibres in the myenteric plexus of the stomach. The results indicate that a VIP-like, a neurotensin-like and a bombesin-like peptide are present in neurons of the gut of Lepisosteus.  相似文献   

10.
Secretoneurin is a functional neuropeptide derived from secretogranin II (chromogranin C). This proprotein is processed to varying degrees in neuroendocrine tissues. In the present study we established by gel filtration high performance liquid chromatography that in human intestinal wall and mucosa an antiserum against secretoneurin detects as the major immunoreactive moiety the free peptide secretoneurin. In the mucosa some larger immunoreactive peptides were also present, however, a significant amount of the intact proprotein secretogranin II could not be detected. By immunohistochemistry we studied the distribution of secretoneurin within the gut. Antibodies to protein gene product 9.5 and chromogranin A were used to identify all neurons and endocrine cells, respectively, whilst those to the peptides substance P. CGRP and somatostatin were used for the further characterization of individual secretoneurin-positive structures. Secretoneurin immunoreactivity was found in nerve fibres in all layers of the gut wall. In both myenteric and submucous plexuses, nerve fibres and the majority of ganglion cells were secretoneurin-immunoreactive. In the mucosa, some secretoneurin-positive nerve processes ran parallel to the basal membrane of epithelial cells, occasionally invading the epithelial layer. Secretoneurin immunoreactivity was found in endocrine cells, mostly D cells, in the following regions in descending order of density: stomach/duodenum; rectum; colon; ileum. Thus, secretoneurin is a new major peptide within the human enteric neuroendocrine system. Its presence in abundant myenteric ganglion cells may imply a role in the modulation of gastrointestinal motility. The chemotactic properties of secretoneurin and its possible localization in sensory fibres suggest that this peptide may be involved in the genesis of intestinal inflammation.  相似文献   

11.
Biogenic peptides and amines associated with the chromaffin tissue in Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), European eel (Anguilla anguilla), spiny dogfish (Squalus acanthias) and Atlantic hagfish (Myxine glutinosa) were identified utilizing immunohistochemical techniques. Within the posterior cardinal vein (PCV) in cod, trout and eel, a subpopulation of chromaffin cells displayed immunoreactivity to tyrosine hydroxylase (TH) and dopamine--hydroxylase (DH) but not to phenylethanolamine-N-methyltransferase (PNMT). TH-like immunorectivity was observed within cells in hagfish hearts. Nerve fibres displaying vasoactive intestinal peptide (VIP) immunoreactivity and pituitary adenylyl cyclase activating peptide (PACAP) immunoreactivity innervated cod, trout and ell chromaffin cells. In eel, neuropeptide Y (NPY)-like and peptide YY (PYY)-like immunoreactivity was located within cells in the PCV, including chromaffin cells. Serotonin-like immunoreactivity was observed within eel and cod chromaffin cells and in hagfish hearts. In the dogfish axillary bodies, nerves displaying TH-like, VIP-like, PACAP-like, substance P-like and galanin-like immunoreactivity were observed. These results are compared with those of other vertebrates, and potential roles for these substances in the control of catecholamine release are suggested.  相似文献   

12.
Summary The innervation of the swimbladder in four different teleost species has been studied by the use of immunohistochemical methods. The teleosts examined belong to two different groups regarding their swimbladder morphology: physoclists (the cod, Gadus morhua and the goldsinny wrasse, Ctenolabrus rupestris) and physostomes (the eel, Anguilla anguilla and the rainbow trout, Salmo gairdneri). Vasoactive intestinal polypeptide-like immunoreactivity was demonstrated in nerves of the swimbladder walls of all four species, and in the gas glands of the cod and the goldsinny wrasse. Substance P-like immunoreactivity was shown in swimbladders of the cod, eel and rainbow trout but not the goldsinny wrasse. Immunoreactivity to met-enkephalin antiserum was revealed in the swimbladder walls of the eel and the goldsinny wrasse, while neurotensin-like immunoreactivity was present in the goldsinny wrasse and rainbow trout swimbladders. Neurotensin-like immunoreactivity was also seen in the gas gland of the goldsinny wrasse. 5-Hydroxytryptamine immunoreactivity was found in endocrine cells in the pneumatic duct of the eel and in the swimbladder walls of the goldsinny wrasse and the rainbow trout. In conclusion, all teleosts examined showed a very close resemblance in the peptidergic/tryptaminergic innervation of the swimbladder to that of the gut, inasmuch as the immunoreactivity present in the swimbladders always occurred in the gut of the same species.  相似文献   

13.
Summary A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells.In mouse about 13 GEP endocrine cell types are distinguished 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. -endorphin-, 13. serotonin-immunoreactive cells.Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1–9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells.Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonlus. In mouse pancreas and fish gut, endocrine cells showing only PP-or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells, showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-1-gastrin-and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed.Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.In honour of Prof. P. van Duijn  相似文献   

14.
Studies indicating evidence for the presence of the amphibian octapeptide xenopsin in gastric mucosa of mammals prompted us to investigate the cellular localization of this peptide. Using the peroxidase-antiperoxidase method and a specific antiserum to xenopsin (Xen-7) on paraffin and adjacent semithin sections of gastric antral mucosa from man, dog, and Tupaia belangeri, we found numerous epithelial cells showing a specific positive immunoreaction. These cells were of typical pyramidal shape and could be classified as of the "open" type. Cell quantification in serial sections processed for xenopsin and gastrin immunoreactivity, respectively, revealed an identical number of cells per section and an identical distribution of these cells in the middle zone of the antral mucosa. Furthermore, adjacent semithin sections demonstrated the colocalization of xenopsin and gastrin immunoreactivity within the same G-cell. The xenopsin antiserum could be completely absorbed with synthetic xenopsin but not with gastrin. Preabsorption tests with neurotensin, a xenopsin related peptide, or with somatostatin, glucagon, and enkephalins gave no evidence for crossreactivity of the xenopsin antiserum with these peptides. It is concluded that gastric antral G-cells in addition to gastrin also contain the amphibian peptide xenopsin.  相似文献   

15.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

16.
Summary The peptides cholecystokinin (CCK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP), and the synthesizing enzyme for acetylcholine, choline acetyltransferase (ChAT) were localized immunohistochemically in nerve cell bodies of the submucous ganglia in the small intestine of the guinea-pig. VIP-like immunoreactivity was found in 45% of submucous neurons. ChAT immunoreactivity was observed in a separate group of nerve cells, which made up 54% of the total population. There were three subsets of neurons immunoreactive for ChAT: (1) ChAT neurons that also contained immunoreactivity for each of the peptides CCK, SOM and NPY, representing 29% of all submucous neurons; (2) ChAT neurons that also contained SP-like immunoreactivity, representing 11% of all submucous neurons, and (3) ChAT cells that did not contain any detectable amount of the peptides that were localized in this study.  相似文献   

17.
The presence of a substance P-like peptide in intestinal and body wall tissues, ventral nerve fiber and seminal vesicles of the earthworm Lumbricus terrestris has been demonstrated by means of a radioimmunoassay technique. The greatest substance P-like immunoreactivity was measured in intestinal tissues where it stimulates the rate of spontaneous contraction. This effect is inhibited by the substance P antagonist (D-pro2, D-trp7,9)-SP suggesting a possible involvement of receptor mechanisms. Dual localization of substance P-like immunoreactivity in earthworm intestinal and nerve tissues follows the pattern observed of peptidal hormones in vertebrates which are common to both endocrine and non-endocrine tissues.  相似文献   

18.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

19.
A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells. In mouse about 13 GEP endocrine cell types are distinguished: 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. beta-endorphin-, 13. serotonin-immunoreactive cells. Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1-9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells. Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonius. In mouse pancreas and fish gut, endocrine cells showing only PP- or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-t-gastrin- and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed. Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.  相似文献   

20.
Summary Studies indicating evidence for the presence of the amphibian octapeptide xenopsin in gastric mucosa of mammals prompted us to investigate the cellular localization of this peptide. Using the peroxidase-antiperoxidase method and a specific antiserum to xenopsin (Xen-7) on paraffin and adjacent semithin sections of gastric antral mucosa from man, dog, and Tupaia belangeri, we found numerous epithelial cells showing a specific positive immunoreaction. These cells were of a typical pyramidal shape and could be classified as of the open type. Cell quantification in serial sections processed for xenopsin and gastrin immunoreactivity, respectively, revealed an identical number of cells per section and an identical distribution of these cells in the middle zone of the antral mucosa. Furthermore, adjacent semithin sections demonstrated the colocalization of xenopsin and gastrin immunoreactivity within the same G-cell. The xenopsin antiserum could be completely absorbed with synthetic xenopsin but not with gastrin. Preabsorption tests with neurotensin, a xenopsin related peptide, or with somatostatin, glucagon, and enkephalins gave no evidence for crossreactivity of the xenopsin antiserum with these peptides.It is concluded that gastric antral G-cells in addition to gastrin also contain the amphibian peptide xenopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号