首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
11-(Dansylamino) undecanoic acid (DAUDA) is a dansyl-type fluorophore and has widely used as a probe to determine the binding site for human serum albumin (HSA). Here, we reported that structure of HSA-Myristate-DAUDA ternary complex and identified clearly the presence of two DAUDA molecules at fatty acid (FA) binding site 6 and 7 of HSA, thus showing these two sites are weak FA binding sites. This result also show that DAUDA is an appropriate probe for FA site 6 and 7 on HSA as previous studied, but not a good probe of FA binding site 1 that is likely bilirubin binding site on HSA.  相似文献   

2.
We synthesized a fluorescent probe, 2,6-dichloro-4-aminophenol iloprost or dichlorohydroxyphenylamide of iloprost (DCHPA-iloprost) by reacting the stable prostacyclin analog, iloprost (ZK 35 374), with 2,6-dichloro-4-aminophenol with a yield of 60%. This probe exhibited an optical spectrum which overlapped with the emission spectrum of the sole tryptophan of human serum albumin (HSA). Energy transfer from the tryptophan residue to the phenol moiety of DCHPA-iloprost was observed. We utilized this donor-quenching phenomenon to quantitate the binding stoichiometry and affinity as well as the association rate of DCHPA-iloprost binding to HSA. As DCHPA-iloprost showed similar binding characteristics similar to those of iloprost and prostacyclin and competed with iloprost for HSA binding sites, we used DCHPA-iloprost as a probe to locate the binding domain of prostacyclin (PGI2) in HSA. The distance between the tryptophan indole and the phenol group of DCHPA-iloprost was estimated to be 15-18 A. Because iloprost binding to HSA was competitive with warfarin and not with free fatty acid, we propose that PGI2 binds to the 'domain 2' of HSA was competitive with warfarin and not with free fatty acid, we propose that PGI2 binds to the 'domain 2' of HSA molecules. A possible molecular mechanism by which HSA reduces the chemical degradation of PGI2 and stabilizes its activity could be derived from this model.  相似文献   

3.
1. The fluorescent fatty acid probe 11-(dansylamino)undecanoic acid (DAUDA) binds with high affinity to bovine and human serum albumin (BSA and HSA) at three sites. 2. The Kd of the primary binding site could not be determined; however, the two secondary sites appeared to be equivalent, with an apparent Kd of 8 x 10(-7) M for both BSA and HSA. 3. The spectral characteristics of DAUDA when bound to the primary site of the two albumins were different, with HSA producing a greater fluorescence enhancement and emission maximum at a shorter wavelength (480 nm) than for BSA (495 nm). 4. Displacement studies indicated that the DAUDA-binding sites were not equivalent to the primary long-chain fatty acid-binding sites on albumin, but corresponded to the bilirubin sites. Fatty acyl-CoAs also bind to the bilirubin sites, as do medium-chain fatty acids. 5. The solubility, stability and spectral properties of DAUDA make it an excellent probe for investigating the bilirubin-binding sites of albumin, particularly HSA.  相似文献   

4.
T Oida 《Journal of biochemistry》1986,100(6):1533-1542
Binding of free fatty acid (FFA) to human serum albumin (HSA) was studied by 1H-NMR spectroscopy. Addition of FFA to defatted HSA at a mole ratio (FFA/HSA) up to 4 caused a small change in the NMR spectrum of HSA. The integrated intensity of sharp signals of the histidine C2 proton region of HSA decreased as the mole ratio was increased from 0 to 4 for both medium chain (lauric acid) and long chain (palmitic acid, stearic acid, and oleic acid) FFA's. By contrast, when the mole ratio was increased above 4, several histidine C2 proton signals coalesced and sharpened. Therefore, the HSA molecule appears to have a different conformation on binding with more than 4 FFA molecules, which allows increased local motions of HSA. By analyzing the NMR difference spectra of HSA with various amounts of FFA, the conformational change of HSA was investigated in more detail. The difference spectrum between [HSA + 2FFA] and [HSA + FFA] was almost the same as the difference spectrum between [HSA + FFA] and [HSA], which suggests that one primary site binds a pair of FFA molecules. These results are consistent with those of a spectroscopic study with polyene fatty acids (Berde, C.B., et al. (1979) J. Biol. Chem. 254, 391-400). The existence of a bimolecular complex of FFA molecules in aqueous solution may facilitate this type of binding. Similarly, it was found that the third and fourth FFA molecules were bound to a secondary site on HSA, because the difference spectrum between [HSA + 4FFA] and [HSA + 3FFA] was nearly equal to the difference spectrum between [HSA + 3FFA] and [HSA + 2FFA]. Further addition of FFA resulted in a drastic spectral change of HSA. The NMR difference spectrum between HSA solutions with perdeuterated FFA and those with undeuterated FFA gave the 1H-NMR spectra of FFA molecules bound to HSA. Titration of FFA revealed that, in the binding to the primary site of HSA, the carboxyl group of FFA is tightly bound to the protein, whereas the methyl group is not so firmly bound. In contrast, in the binding to low affinity sites, the methyl group is bound to HSA as tightly as other portions of the molecule.  相似文献   

5.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

6.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

7.
Human serum albumin (HSA) has two primary binding sites for drug molecules. These sites selectively bind different dansylated amino acid compounds, which-due to their intrinsic fluorescence-have long been used as specific markers for the drug pockets on HSA. We present here the co-crystal structures of HSA in complex with six dansylated amino acids that are specific for either drug site 1 (dansyl-l-asparagine, dansyl-l-arginine, dansyl-l-glutamate) or drug site 2 (dansyl-l-norvaline, dansyl-l-phenylalanine, dansyl-l-sarcosine). Our results explain the structural basis of the site-specificity of different dansylated amino acids. They also show that fatty acid binding has only a modest effect on binding of dansylated amino acids to drug site 1 and identify the location of secondary binding sites.  相似文献   

8.
P Sch?nfeld  H Struy 《FEBS letters》1999,457(2):179-183
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), a branched chain fatty acid accumulating in Refsum disease to high levels throughout the body, induces uncoupling of rat liver mitochondria similar to non-branched fatty acids (e.g. palmitic acid), but the contribution of the ADP/ATP carrier or the aspartate/glutamate carrier in phytanic acid-induced uncoupling is of minor importance. Possible deleterious effects of phytanic acid on membrane-linked energy coupling processes were studied by ESR spectroscopy using rat liver mitochondria and a membrane preparation labeled with the lipid-specific spin probe 5-doxylstearic acid (5-DSA) or the protein-specific spin probe MAL-TEMPO (4-maleimido-2,2,6, 6-tetramethyl-piperidine-1-oxyl). The effects of phytanic acid on phospholipid molecular dynamics and on the physical state of membrane proteins were quantified by estimation of the order parameter or the ratio of the amplitudes of the weakly to strongly immobilized MAL-TEMPO binding sites (W/S ratio), respectively. It was found, that phytanic acid (1) increased the mobility of phospholipid molecules (indicated by a decrease in the order parameter) and (2) altered the conformational state and/or the segmental mobility of membrane proteins (indicated by a drastic decrease in the W/S ratio). Unsaturated fatty acids with multiple cis-double bonds (e.g. linolenic or arachidonic acid), but not non-branched FFA (ranging from chain length C10:0 to C18:0), also decrease the W/S ratio. It is hypothesized that the interaction of phytanic acid with transmembrane proteins might stimulate the proton permeability through the mitochondrial inner membrane according to a mechanism, different to a protein-supported fatty acid cycling.  相似文献   

9.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35), in three types of binding site on a human serum albumin (HSA) molecule has been studied. Study of the time-resolved decay of K-35 polarized fluorescence in HSA has shown that probe molecules bound to different sites have different fluorescence decay times, which poses problems in interpreting the polarization curves. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of the vertical and the horizontal components of polarized fluorescence can each be approximated with three exponentials corresponding to three types of binding site. The mobility of the probe in different sites was estimated. The mobility was different but in all cases hindered by tens of times relative to the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known drug site I: there the rotational correlation time was at least 72 ns. In the sites of the second type, this time was about 40 ns, and in the sites of the third type, about 10 ns. The faster was the rotation, the higher was the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

10.
The binding of several different categories of small molecules to bovine (BSA) and human (HSA) serum albumins has been studied for many years through different spectroscopic techniques to elucidate details of the protein structure and binding mechanism. In this work we present the results of the study of the interactions of BSA and HSA with the anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS) monitored by fluorescence spectroscopy of the intrinsic tryptophans at pH 5.0. Similarly to pH 7.0 and 9.0, at low concentrations, the interaction of BSA with these surfactants shows a quenching of fluorescence with Stern-Volmer quenching constants of (1.1+/-0.1)x10(4) M(-1), (3.2+/-0.1)x10(3) M(-1) and (2.1+/-0.1)x10(3) M(-1) for SDS, HPS and CTAC, respectively, which are associated to the 'effective' association constants to the protein. On the interaction of these surfactants with HSA, an opposite effect was observed as compared to BSA, i.e., an enhancement of fluorescence takes place. For both proteins, at low surfactant concentrations, a positive cooperativity was observed and the Hill plot model was used to estimate the number of surfactant binding sites, as well as the association constants of the surfactants to the proteins. It is worthy of notice that the binding constants for the surfactants at pH 5.0 are lower as compared to pH 7.0 and 9.0. This is probably due to fact that the protein at this acid pH is quite compact reducing the accessibility of the surfactants to the hydrophobic cavities in the binding sites. The interaction of myristic acid with both proteins shows a similar fluorescence behaviour, suggesting that the mechanism of the interaction is the same. Recently published crystallographic studies of HSA-myristate complex were used to perform a modelling study with the aim to explain the fluorescence results. The crystallographic structure reveals that a total of five myristic acid molecules are asymmetrically bound in the macromolecule. Three of these sites correspond to higher affinity ones and correlate with high association constants described in the literature. Our models for BSA and HSA with bound SDS suggest that the surfactant could be bound at the same sites as those reported in the crystal structure for the fatty acid. The differences in tryptophan vicinity upon surfactant binding are explored in the models in order to explain the observed spectroscopic changes. For BSA the quenching is due to a direct contact of a surfactant molecule with the indole of W131 residue. It is clear that the binding site in BSA which is very close, in contact with tryptophan W131, corresponds to a lower affinity site, explaining the lower binding constants obtained from fluorescence studies. In the case of HSA the enhancement of fluorescence is due to the removal of static quenching of W214 residue in the intact protein caused by nearby residues in the vicinity of this tryptophan.  相似文献   

11.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D2O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D2O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   

12.
Human serum albumin (HSA) is an abundant plasma protein that is responsible for the transport of fatty acids. HSA also binds and perturbs the pharmacokinetics of a wide range of drug compounds. Binding studies have revealed significant interactions between fatty acid and drug-binding sites on albumin but high-resolution structural information on ligand binding to the protein has been lacking. We report here a crystallographic study of five HSA-fatty acid complexes formed using saturated medium-chain and long-chain fatty acids (C10:0, C12:0, C14:0, C16:0 and C18:0). A total of seven binding sites that are occupied by all medium-chain and long-chain fatty acids have been identified, although medium-chain fatty acids are found to bind at additional sites on the protein, yielding a total of 11 distinct binding locations. Comparison of the different complexes reveals key similarities and significant differences in the modes of binding, and serves to rationalise much of the biochemical data on fatty acid interactions with albumin. The two principal drug-binding sites, in sub-domains IIA and IIIA, are observed to be occupied by fatty acids and one of them (in IIIA) appears to coincide with a high-affinity long-chain fatty acid binding site.  相似文献   

13.
本研究旨在对罗丹明类荧光探针ZM-6与人血清白蛋白(HSA)的相互作用进行研究。采用了荧光光谱法、三维荧光光谱法、同步荧光光谱法以及CD光谱法在模拟生理条件下对二者的相互作用以及HSA的构象进行了研究。研究结果表明,探针与ZM-6之间的猝灭机理主要是静态猝灭方式。根据热力学数据确定了二者之间的作用力,类型为范德华力和氢键。二者之间的结合距离为4.45 nm。同时得出,ZM-6对HSA的构象产生了影响。此研究对于探针分子的设计以及修饰提供有效的数据以及理论支持。  相似文献   

14.
Specific ligand markers for the various binding sites of human serum albumin (HSA) have been described in the literature. Some of these markers (medium chain fatty acids, warfarin, digoxin, and bilirubin) were used as mobile phase modifiers. Using a high performance liquid chromatographic (HPLC) column containing HSA as stationary phase, their influence was investigated on the separation in this phase of the enantiomers of three benzodiazepines (temazepam, oxazepam, and lorazepam). Displacement effects were observed with medium chain fatty acids. This influence was proportional to the chain length and to the concentration of acid. Allosteric cooperative effects were noted with digoxin for the three benzodiazepines. Both displacement and cooperative effects were observed with warfarin. Stereoselectivity was decreased for temazepam and oxazepam and increased for lorazepam. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Human serum albumin is the most abundant protein in the circulatory system, and one of its principal functions is to transport fatty acids. Binding of octanoate, decanoate, laurate and myristate was studied by a rate-of-dialysis technique. The primary association constants increased, but not linearly, with chain length. The number of high-affinity sites also increased with chain length; octanoate and decanoate bind to one such site, whereas laurate and myristate most probably bind to two sites. Albumin is composed of three homologous helical domains (I-III), which can be subdivided into two subdomains (A and B). For getting information about the positions of the high-affinity sites we produced 13 recombinant isoforms mutated in four different subdomains. Results obtained with these albumins are in accordance with the following model: octanoate and decanoate bind to a single site in subdomain IIIA, laurate binds to sites in subdomains IIIA and IIIB, whereas myristate binds in subdomains IB and IIIB. The results also showed that primary fatty acid binding is sensitive to amino acid substitutions in other parts of the protein. This is in contrast to the effect of amino acid substitutions of genetic albumin variants (alloalbumins). Usually these substitutions, which are situated at the surface of the protein, have no effect on fatty acid binding. Binding of fatty acid anions to different high-affinity sites and the sensitivity of these sites to amino acid substitutions elsewhere in the protein (and perhaps also to other types of modifications) are important factors that could effect simultaneous binding of other ligands, e.g. in patients treated with albumin-binding drugs.  相似文献   

16.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35) in three types of binding sites on a human serum albumin (HSA) molecule has been studied. The time-resolved decay of K-35 polarized fluorescence in HSA has been studied and it has been shown that probe molecules bound to different sites have different fluorescence decay time, which poses problems in the interpretation of polarization decay. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of each of vertical and horizontal polarized fluorescence components can be approximated by three exponentials corresponding to three types of binding sites. The mobility of the probe in different sites was estimated. The mobility was different but hindered by tens of times in all sites as compared with the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known first drug-binding site: here the rotational correlation was close to 72 ns or more. In the sites of the second type, the time was about 40 ns, and in the sites of the third type, the time was about 10 ns. It was found that the higher the rotation rate, the higher the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

17.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D(2)O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D(2)O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   

18.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.  相似文献   

20.
Surface-enhanced Raman spectroscopy was employed in this work to study the interaction between the antitumoral drug emodin and human serum albumin (HSA), as well as the influence of fatty acids in this interaction. We demonstrated that the drug/protein interaction can take place through two different binding sites which are probably localized in the IIA and IIIA hydrophobic pockets of HSA and which correspond to Sudlow's I and II binding sites, respectively. The primary interaction site of this drug seems to be site II in the defatted albumin. Fatty acids seem to displace the drug from site II to site I in nondefatted HSA, due to the high affinity of fatty acids for site II. The drug interacts with the protein through its dianionic form in defatted HSA (when placed in the site II) and through its neutral form in the site I of nondefatted albumins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号