首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombinant tick anticoagulant peptide (r-TAP), a potent and specific inhibitor of blood coagulation factor Xa, was purified to > 99% homogeneity at the multi-gram scale. Genetically engineered yeast secreted 200–250 mg/l of the heterologous protein into the medium. Cells were separated from broth by diafiltration and purification was done by two chromatographic steps, both conducive to operation on a large scale. Analysis of the purified protein by several methods indicated that it was > 99% homogeneous and no incompletely processed or truncated proteins were detected. Physico-chemical characterization data of r-TAP show that it exists as a monomer in solution and no evidence of post-translational modification was observed. The purified protein was fully active in inhibiting human coagulation factor Xa.  相似文献   

2.
3.
Recombinant immunotoxin for the treatment of cancer was made by connecting toxins to 'carcinoma-specific' antibodies that selectively bind to cancer cells, then kills them without harming the normal cells. The divalent recombinant immunotoxin, [B3(Fab)-ext-PE38]2, is a derivative of B3(Fab)-PE38. B3(Fab)-PE38 was made by fusing the Fab domain of the monoclonal antibody (MAb) B3 to PE38, a truncated mutant form of Pseudomonas exotoxin (PE). In this study, B3(Fab)-ext-PE38 was constructed, which has the hinge region of the B3(Fab)-PE38 extended with the peptide extension, G4C(G4S)2, and connected to the C3 connector. The Cys residue of the extension peptide chain makes the disulfide bond between the two Fab domains. The extension sequence (ext) makes the dimerization of B3(Fab)-ext-PE38 easier to form the divalent immunotoxin, because it decreases the steric hindrance between the two PE38s. The constructed genes were expressed in E. coli as inclusion bodies. Polypeptides that were obtained from the inclusion body were refolded, and the active forms were purified. The ID50 values of the divalent molecule, [B3(Fab)-ext-PE38]2, were about 4 ng/ml on A431 cell lines, about 1 ng/ml on CRL1739 cell lines, and 5 ng/ml on MCF-7 cell lines. The [B3(Fab)-ext-PE38]2 showed about a 12-fold higher cytotoxicity on CRL1739 cell lines than B3(scFv)-PE40 did.  相似文献   

4.
NMR structure determination of tick anticoagulant peptide (TAP).   总被引:3,自引:1,他引:2       下载免费PDF全文
Tick anticoagulant peptide (TAP) is a potent and selective 60-amino acid inhibitor of the serine protease Factor Xa (fXa), the penultimate enzyme in the blood coagulation cascade. The structural features of TAP responsible for its remarkable specificity for fXa are unknown, but the binding to its target appears to be unique. The elucidation of the TAP structure may facilitate our understanding of this new mode of serine protease inhibition and could provide a basis for the design of novel fXa inhibitors. Analyses of homo- and heteronuclear two-dimensional NMR spectra (total correlation spectroscopy, nuclear Overhauser effect spectroscopy [NOESY], constant time heteronuclear single quantum correlation spectroscopy [CT-HSQC], and HSQC-NOESY; 600 MHz; 1.5 mM TAP; pH 2.5) of unlabeled, 13C-labeled, and 15N-labeled TAP provided nearly complete 1H sequence-specific resonance assignments. Secondary structural elements were identified by characteristic NOE patterns and D2O amide proton-exchange experiments. A three-dimensional structure of TAP was generated from 412 NOESY-derived distance and 47 dihedral angle constraints. The structural elements of TAP are similar in some respects to those of the Kunitz serine protease inhibitor family, with which TAP shares weak sequence homology. This structure, coupled with previous kinetic and biochemical information, confirms previous suggestions that TAP has a unique mode of binding to fXa.  相似文献   

5.
The effect of introducing a disulfide bridge between the N- and C-terminal ends on the structure and biological activities of the 13-residue linear peptide PKLLKTFLSKWIG(SPFK), which has both antibacterial and hemolytic activity, have been investigated. The terminal amino acids P and G in SPFK were replaced by cysteines to form a disulfide bridge. The linear peptides C(Acm)KLLKTFLSKWIC(Acm) and C(Acm) KLLKTFLSKWIC(Acm)-amide, where Acm is acetamidomethyl group, showed antibacterial activity but did not possess hemolytic activity unlike SPFK. Introduction of an S-S bridge resulted in enhanced hemolytic activity compared with SPFK. The hemolytic activity was particularly pronounced in the cyclic peptide CKLLKTFLSKWIC-amide. Circular dichroism studies indicate that the cyclic peptides tend to adopt distorted helical structures. The cyclic peptides also have a greater affinity for lipid vesicles, which could be the reason for the effective perturbation of the erythrocyte membrane.  相似文献   

6.
S P Jordan  S S Mao  S D Lewis  J A Shafer 《Biochemistry》1992,31(23):5374-5380
The reaction pathway for inhibition of human factor Xa (fXa) by recombinant tick anticoagulant peptide (rTAP) was studied by stopped-flow fluorometry. In the presence of the fluorogenic substrate N-tert-butyloxycarbonyl-L-isoleucyl-L-glutamylglycyl-L-arginyl-7-amido-4 - methylcoumarin (B-IEGR-AMC) and under pseudo-first-order conditions, inhibition appears to occur via a two-step process. Initially, a weak enzyme-inhibitor complex forms with a dissociation constant (Ki) of 68 +/- 6 microM. The initial complex then rearranges to a more stable fXa-rTAP complex with a rate constant (k2) of 123 +/- 5 s-1. The apparent second-order rate constant (k2/Ki) describing formation of the stable complex is (1.8 +/- 0.2) x 10(6) M-1 s-1. Studies of the reaction of rTAP with fXa in the presence of the fluorescent active-site probe p-amino-benzamidine (P) revealed a reaction pathway wherein rTAP initially binds to the fXa-P complex in a two-step process prior to displacing P from the active site. These results indicate that rTAP can bind fXa via a site distinct from the active site (an exosite). The subsequent displacement of P from the active site of fXa by rTAP exhibits a dependence on the concentration of P, indicating that rTAP is locked into the active site in a third step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
N S Reading  S D Aust 《Biochemistry》2001,40(27):8161-8168
Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.  相似文献   

8.
The complete amino acid sequence of recombinant human Cu-Zn superoxide dismutase (CuZnSOD) is presented. The S-carboxymethylated protein was cleaved at lysine residues (with Achromobacter protease I) to provide a set of nine non-overlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by cleavage at glutamic acid residues (with S. aureus V8 protease) and at arginine (with clostripain). The recombinant protein contains a single disulfide bond between cysteine residues 57 and 146. The primary sequence of recombinant human CuZnSOD is identical to that predicted by its cDNA sequence.  相似文献   

9.
The mode of disulfide linkages in bombyxin-IV, an insulin superfamily peptide consisting of A- and B-chains, was determined as A6–A11, A7–B10, and A20–B22. An intermolecular bond of A20–B22 was identified by sequencing and mass spectrometric analysis of the fragments generated by thermolysin digestion of natural bombyxin-IV. The mode of the remaining two bridges was determined by chemical and selective synthesis of three possible disulfide bond isomers of bombyxin-IV. A- and B-chains were synthesized by solid-phase method, and three disulfide bonds were bridged stepwise and in a fully controlled manner. Retention time on reversed-phase high-performance liquid chromatography (HPLC), thermolysin digests, and biological activity of the synthetic [A6–A11, A7–B10, A20–B22-cystine]-bombyxin-IV revealed that it was identical with the natural bombyxin-IV. Two other isomers with respect to disulfide bond arrangement, [A6–A7, A11–B10, A20–B22-cystine]- and [A6–B10, A7–A11, A20–B22-cystine]-bombyxin-IVs, were distinguishable from the natural one by use of HPLC, thermolysin digestion, and bioassay.  相似文献   

10.
Tick anticoagulant peptide (TAP) is a factor Xa-specific inhibitor and is structurally homologous to bovine pancreatic trypsin inhibitor (BPTI). The fully reduced TAP refolds spontaneously to form the native structure under a wide variation of redox buffers. The folding intermediates of TAP consist of at least 22 fractions of one-disulfide, two-disulfide, and three-disulfide scrambled isomers. Three species of well-populated one- and two-disulfide intermediates were isolated and structurally characterized. The predominant one-disulfide species contains TAP-(Cys33—Cys55). Two major two-disulfide isomers were TAP-(Cys33—Cys55, Cys15—Cys39) and TAP-(Cys33—Cys55, Cys5—Cys39). Both Cys33—Cys55 and Cys15—Cys39 are native disulfides of TAP. These three species are structural counterparts of BPTI-(Cys30—Cys51), BPTI-(Cys30—Cys51, Cys14—Cys38), and BPTI-(Cys30—Cys51,Cys5—Cys38), which have been shown to be the major intermediates of BPTI folding. In addition, time-course-trapped folding intermediates of TAP, consisting of about 47% one-disulfide species and 30% two-disulfide species, were collectively digested with thermolysin, and fragmented peptides were analyzed by Edman sequencing and mass spectrometry in order to characterize the disulfide-containing peptides. Among the 15 possible single-disulfide pairings of TAP, 10 (2 native and 8 nonnative) were found as structural components of its one- and two-disulfide folding intermediates. The results demonstrate that the major folding intermediates of TAP bear structural homology to those of BPTI. However, the folding pathway of TAP differs from that of BPTI by (a) a higher degree of heterogeneity of one- and two-disulfide intermediates and (b) the presence of three-disulfide scrambled isomers as folding intermediates. Mechanism(s) that may account for these diversities are proposed and discussed.  相似文献   

11.
The mode of disulfide linkages in bombyxin-IV, an insulin superfamily peptide consisting of A- and B-chains, was determined as A6–A11, A7–B10, and A20–B22. An intermolecular bond of A20–B22 was identified by sequencing and mass spectrometric analysis of the fragments generated by thermolysin digestion of natural bombyxin-IV. The mode of the remaining two bridges was determined by chemical and selective synthesis of three possible disulfide bond isomers of bombyxin-IV. A- and B-chains were synthesized by solid-phase method, and three disulfide bonds were bridged stepwise and in a fully controlled manner. Retention time on reversed-phase high-performance liquid chromatography (HPLC), thermolysin digests, and biological activity of the synthetic [A6–A11, A7–B10, A20–B22-cystine]-bombyxin-IV revealed that it was identical with the natural bombyxin-IV. Two other isomers with respect to disulfide bond arrangement, [A6–A7, A11–B10, A20–B22-cystine]- and [A6–B10, A7–A11, A20–B22-cystine]-bombyxin-IVs, were distinguishable from the natural one by use of HPLC, thermolysin digestion, and bioassay.  相似文献   

12.
Three 1 ns length molecular dynamics simulations of an RGD peptide (Ac-Pen-Arg-Gly-Asp-Cys-NH2, with Pen denoting penicillamine) have been performed in aqueous solution, one for the disulfide bridged, and two for the unbridged form. The trajectories were analyzed to identify conformations explored by the two forms and to calculate several properties: NMR vicinal coupling constants, order parameters, dipole moments and diffusion coefficients, in an effort to describe the physical role of the disulfide bond. The cyclic peptide was able to explore several distinct backbone conformations centered around a turn-extended-turn structure. However, its flexibility was limited and it appeared to be 'locked in' into a a family of structures characterized by a high dipole moment and a well-defined conformation of the pharmacophore, which has been previously identified as biologically active. Excellent agreement between the simulated and observed NMR vicinal coupling constants indicates that realistic structures were sampled in the cyclic peptide simulation. The linear form of the peptide was much more flexible than the cyclic one. In the two independent 1 ns simulations of the linear form the explored conformations could be roughly grouped into two classes, of cyclic-like and extended type. Within each simulation the peptide switched between the two classes of structures several times. Exact matches between conformations in the two linear peptide simulations were not found; several conformational regions with backbone rms deviations below 1A were identified, suggesting that representative structures of the linear form have also been identified. In the linear peptide simulations the RGD pharmacophore is able to adopt a wide range of conformations, including the one preferred by the cyclic form. The lower biological activity of the linear peptide compared to the cyclic one may be correlated with the lower population of this structure in the absence of the disulfide bond.  相似文献   

13.
Manganese peroxidase (MnP) produced by Phanerochaete chrysosporium, which catalyzes the oxidation of Mn(2+) to Mn(3+) by hydrogen peroxide, was shown to be susceptible to thermal inactivation due to the loss of calcium [Sutherland, G. R. J.; Aust, S. D. Arch. Biochem. Biophys. 1996, 332, 128-134]. The recombinant enzyme, lacking glycosylation, was found to be more susceptible [Nie, G.; Reading, N. S.; Aust, S. D. Arch. Biochem. Biophys. 1999, 365, 328-334]. On the basis of the properties and structure of peanut peroxidase, we have engineered a disulfide bond near the distal calcium binding site of MnP by means of the double mutation A48C and A63C. The mutant enzyme had activity and spectral properties similar to those of native, glycosylated MnP. The thermostabilities of native, recombinant, and mutant MnP were studied as a function of temperature and pH. MnPA48C/A63C exhibited kinetics of inactivation similar to that of native MnP. The addition of calcium decreased the rate of thermal inactivation of the enzymes, while EGTA increased the rate of inactivation. Thermally treated MnPA48C/A63C mutant was shown to contain one calcium, and it retained a percentage of its original manganese oxidase activity; native and recombinant MnP were inactivated by the removal of calcium from the protein.  相似文献   

14.
Thrombus formation is a crucial factor in the precipitation of unstable angina or myocardial infarction. Recently, several anticoagulant serine protease inhibitors have been identified from adult Ancylostoma caninum hookworms. One of them, A. caninum anticoagulant peptide c2 (AcAPc2), can inhibit the activity of factor VIIa/tissue factor complex to exert its antithrombotic effect. However, it is difficult to adopt traditional expression and purification systems to yield high-purity recombinant AcAPc2 (rAcAPc2). Here, we employed a simple method to produce high-yield and high-purity rAcAPc2. We obtained the full-length double-stranded cDNA encoding AcAPc2 by overlapping PCR and cloned it into an intein-based expression vector. The AcAPc2 cDNA was expressed in Escherichia coli and comprised 30% of the total bacterial proteins. The expressed rAcAPc2 was purified by cleaving the fused chitin-binding domain at pH 7.2. Finally, we produced a high yield of rAcAPc2 at a purity of greater than 98%. Importantly, the generated rAcAPc2 prolonged the prothrombin time (PT) and activated partial thromboplastin time (aPTT) of human plasma in vitro in a dose-dependent manner. Therefore, this method to generate the high-purity and bioactive rAcAPc2 may contribute to the scientific research on its biological function and the treatment of thrombotic diseases.  相似文献   

15.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   

16.
M H Chau  J W Nelson 《Biochemistry》1992,31(18):4445-4450
Apamin is being studied as a model for the folding mechanism of proteins whose structures are stabilized by disulfide bonds. Apamin consists of 18 amino acid residues and forms a stable structure consisting of a C-terminal alpha-helix and two reverse turns. This structure is stabilized by two disulfide bonds connecting Cys-1 to Cys-11 and Cys-3 to Cys-15. We used glutathione and dithiothreitol as reference thiols to measure the stabilities of the two disulfide bonds as a function of urea concentration and temperature in order to understand what contributes to the stability of the native structure. The results demonstrate modest contributions from secondary structure to the overall stability of the two disulfide bonds. The equilibrium constants for disulfide bond formation between the fully reduced peptide and the native structure with two disulfide bonds at 25 degrees C and pH 7.0 are 0.42 M2 using glutathione and 2.7 x 10(-5) using dithiothreitol. The equilibrium constant decreases by a factor of approximately 4 in 8 M urea and decreases by a factor of 3 between 0 and 60 degrees C. At least three one-disulfide intermediates are found at low concentrations in the equilibrium mixture. Using glutathione, the equilibrium constants for forming the one-disulfide intermediates with respect to the reduced peptide are approximately 0.025 M. The second disulfide bond forms with an equilibrium constant of approximately 17 M. Thus, apamin folding is very cooperative, but the native structure is only modestly stabilized by urea- or temperature-denaturable secondary structure.  相似文献   

17.
The primary-structure comparison of natural insect defensin A from Phormia terranovae and recombinant insect defensin A from Saccharomyces cerevisiae has been accomplished using a combination of Edman degradation and liquid secondary ion mass spectrometry. The natural and recombinant proteins have the same primary structure with identical disulfide-bond designations (formula; see text) as determined from the peptides obtained after thermolysin digestion. The combined use of Edman degradation and mass spectometry allowed the disulfide-bridge structure to be determined with a total of only 40 micrograms (9.9 nmol) natural peptide. Mass spectrometry provides a rapid means of disulfide-bridge verification, requiring not more than 20 micrograms recombinant insect defensin A, which is compatible with use in batch analysis.  相似文献   

18.
A rapid method for determining the three disulfide bond pairings in bovine transforming growth factor-alpha (bTGF-alpha) was developed by digesting bTGF-alpha with thermolysin followed by separation of the generated peptides by reversed-phase HPLC. The disulfide-bonded peptides were identified by amino acid sequencing and fast atom bombardment mass spectrometry. The disulfide bond pairings in bTGF-alpha were determined to be homologous to those in the human and mouse TGF-alpha molecules. A species of low bioactivity isolated from the folding/oxidation mixture of chemically synthesized bTGF-alpha was demonstrated to contain two incorrect disulfide bonds. These results indicate that mispairing of disulfide bonds in bTGF-alpha significantly reduces the activity of this molecule.  相似文献   

19.
20.
Surface plasmon resonance biosensor analysis was used to evaluate the thermodynamics and binding kinetics of naturally occurring and synthetic cobalamins interacting with vitamin B(12) binding proteins. Cyanocobalamin-b-(5-aminopentylamide) was immobilized on a biosensor chip surface to determine the affinity of different cobalamins for transcobalamin, intrinsic factor, and nonintrinsic factor. A solution competition binding assay, in which a surface immobilized cobalamin analog competes with analyte cobalamin for B(12) protein binding, shows that only recombinant human transcobalamin is sensitive to modification of the corrin ring b-propionamide of cyanocobalamin. A direct binding assay, where recombinant human transcobalamin is conjugated to a biosensor chip, allows kinetic analysis of cobalamin binding. Response data for cyanocobalamin binding to the transcobalamin protein surface were globally fitted to a bimolecular interaction model that includes a term for mass transport. This model yields association and dissociation rate constants of k(a) = 3 x 10(7) M(-1) s(-1) and k(d) = 6 x 10(-4) s(-1), respectively, with an overall dissociation constant of K(D) = 20 pM at 30 degrees C. Transcobalamin binds cyanocobalamin-b-(5-aminopentylamide) with association and dissociation rates that are twofold slower and threefold faster, respectively, than transcobalamin binding to cyanocobalamin. The affinities determined for protein-ligand interaction, using the solution competition and direct binding assays, are comparable, demonstrating that surface plasmon resonance provides a versatile way to study the molecular recognition properties of vitamin B(12) binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号