首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Background  

Incorrectly annotated sequence data are becoming more commonplace as databases increasingly rely on automated techniques for annotation. Hence, there is an urgent need for computational methods for checking consistency of such annotations against independent sources of evidence and detecting potential annotation errors. We show how a machine learning approach designed to automatically predict a protein's Gene Ontology (GO) functional class can be employed to identify potential gene annotation errors.  相似文献   

2.

Background  

Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning.  相似文献   

3.

Background  

Gene Ontology (GO) is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role.  相似文献   

4.

Background  

Methods for predicting protein function directly from amino acid sequences are useful tools in the study of uncharacterised protein families and in comparative genomics. Until now, this problem has been approached using machine learning techniques that attempt to predict membership, or otherwise, to predefined functional categories or subcellular locations. A potential drawback of this approach is that the human-designated functional classes may not accurately reflect the underlying biology, and consequently important sequence-to-function relationships may be missed.  相似文献   

5.

Background  

Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases.  相似文献   

6.

Background  

The function of a novel gene product is typically predicted by transitive assignment of annotation from similar sequences. We describe a novel method, GOtcha, for predicting gene product function by annotation with Gene Ontology (GO) terms. GOtcha predicts GO term associations with term-specific probability (P-score) measures of confidence. Term-specific probabilities are a novel feature of GOtcha and allow the identification of conflicts or uncertainty in annotation.  相似文献   

7.

Background  

Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation.  相似文献   

8.

Background  

Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D) models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs.  相似文献   

9.

Background  

The increasing number of sequenced genomes provides the basis for exploring the genetic and functional diversity within the tree of life. Only a tiny fraction of the encoded proteins undergoes a thorough experimental characterization. For the remainder, bioinformatics annotation tools are the only means to infer their function. Exploiting significant sequence similarities to already characterized proteins, commonly taken as evidence for homology, is the prevalent method to deduce functional equivalence. Such methods fail when homologs are too diverged, or when they have assumed a different function. Finally, due to convergent evolution, functional equivalence is not necessarily linked to common ancestry. Therefore complementary approaches are required to identify functional equivalents.  相似文献   

10.
11.

Background  

Filamin (FLN) and non-muscle α-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell.  相似文献   

12.

Background  

Data mining in large DNA sequences is a major challenge in microbial genomics and bioinformatics. Oligonucleotide usage (OU) patterns provide a wealth of information for large scale sequence analysis and visualization. The purpose of this research was to make OU statistical analysis available as a novel web-based tool for functional genomics and annotation. The tool is also available as a downloadable package.  相似文献   

13.
Chen Y  Li Z  Wang X  Feng J  Hu X 《BMC genomics》2010,11(Z2):S11

Background

A large amount of functional genomic data have provided enough knowledge in predicting gene function computationally, which uses known functional annotations and relationship between unknown genes and known ones to map unknown genes to GO functional terms. The prediction procedure is usually formulated as binary classification problem. Training binary classifier needs both positive examples and negative ones that have almost the same size. However, from various annotation database, we can only obtain few positive genes annotation for most offunctional terms, that is, there are only few positive examples for training classifier, which makes predicting directly gene function infeasible.

Results

We propose a novel approach SPE_RNE to train classifier for each functional term. Firstly, positive examples set is enlarged by creating synthetic positive examples. Secondly, representative negative examples are selected by training SVM(support vector machine) iteratively to move classification hyperplane to a appropriate place. Lastly, an optimal SVM classifier are trained by using grid search technique. On combined kernel ofYeast protein sequence, microarray expression, protein-protein interaction and GO functional annotation data, we compare SPE_RNE with other three typical methods in three classical performance measures recall R, precise P and their combination F: twoclass considers all unlabeled genes as negative examples, twoclassbal selects randomly same number negative examples from unlabeled gene, PSoL selects a negative examples set that are far from positive examples and far from each other.

Conclusions

In test data and unknown genes data, we compute average and variant of measure F. The experiments showthat our approach has better generalized performance and practical prediction capacity. In addition, our method can also be used for other organisms such as human.
  相似文献   

14.

Background  

In general, gene function prediction can be formalized as a classification problem based on machine learning technique. Usually, both labeled positive and negative samples are needed to train the classifier. For the problem of gene function prediction, however, the available information is only about positive samples. In other words, we know which genes have the function of interested, while it is generally unclear which genes do not have the function, i.e. the negative samples. If all the genes outside of the target functional family are seen as negative samples, the imbalanced problem will arise because there are only a relatively small number of genes annotated in each family. Furthermore, the classifier may be degraded by the false negatives in the heuristically generated negative samples.  相似文献   

15.

Background  

There has been an explosion in the number of single nucleotide polymorphisms (SNPs) within public databases. In this study we focused on non-synonymous protein coding single nucleotide polymorphisms (nsSNPs), some associated with disease and others which are thought to be neutral. We describe the distribution of both types of nsSNPs using structural and sequence based features and assess the relative value of these attributes as predictors of function using machine learning methods. We also address the common problem of balance within machine learning methods and show the effect of imbalance on nsSNP function prediction. We show that nsSNP function prediction can be significantly improved by 100% undersampling of the majority class. The learnt rules were then applied to make predictions of function on all nsSNPs within Ensembl.  相似文献   

16.

Background  

Functional classification schemes (e.g. the Gene Ontology) that serve as the basis for annotation efforts in several organisms are often the source of gold standard information for computational efforts at supervised protein function prediction. While successful function prediction algorithms have been developed, few previous efforts have utilized more than the protein-to-functional class label information provided by such knowledge bases. For instance, the Gene Ontology not only captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-based hierarchy that captures rich inter-relationships between different classes. These inter-relationships present both opportunities, such as the potential for additional training examples for small classes from larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for standard classification-based approaches.  相似文献   

17.

Background  

Candidate single nucleotide polymorphisms (SNPs) from genome-wide association studies (GWASs) were often selected for validation based on their functional annotation, which was inadequate and biased. We propose to use the more than 200,000 microarray studies in the Gene Expression Omnibus to systematically prioritize candidate SNPs from GWASs.  相似文献   

18.

Background  

Models for the simulation of metabolic networks require the accurate prediction of enzyme function. Based on a genomic sequence, enzymatic functions of gene products are today mainly predicted by sequence database searching and operon analysis. Other methods can support these techniques: We have developed an automatic method "BrEPS" that creates highly specific sequence patterns for the functional annotation of enzymes.  相似文献   

19.
20.

Background  

The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for functional prediction. Knowledge of catalytic sites provides a valuable insight into protein function. Although many computational methods have been developed to predict catalytic residues and active sites, their accuracy remains low, with a significant number of false positives. In this paper, we present a novel method for the prediction of catalytic sites, using a carefully selected, supervised machine learning algorithm coupled with an optimal discriminative set of protein sequence conservation and structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号