首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In the brain of Salmo gairdneri, the content of dopamine (DA), norepinephrine (NE), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) depends upon the location in the brain (hypothalamus, telencephalon or mesencephalon). 2. The origin of feed protein (from animal or vegetal origin) influences the level of the various monoamines studied in different brain structures. 3. Hypoxia (60% oxygen saturation in water) causes modifications of 5-HT and catecholamine (DA, NE) contents in different brain structures, depending upon the diet.  相似文献   

2.
The effect of acute administration of 50% standardised ethanolic extract of Indian Hypericum perforatum (IHp) was studied on the rat brain concentrations of monoamines and their metabolites in five different brain regions, viz. hypothalamus, hippocampus, striatum, pons-medulla and frontal cortex by a HPLC technique. IHp extract was administered at the doses of 50 and 200 mg/kg, p.o. and the brain monoamines were assayed after 30 min of the treatment. IHp treatment significantly decreased the levels of serotonin (5-HT) and its metabolite 5-hydroxy indole acetic acid (5-HIAA) and 5-HT turnover in all the brain regions assayed. On the other hand, IHp treatment significantly augmented the levels of norepinephrine (NE) and its metabolite methylhydroxy phenyl glycol (MHPG) and NE turnover in all the brain regions studied. Similarly, the levels of dopamine (DA) were also significantly augmented in the hypothalamus, striatum and frontal cortex. Likewise, the levels of dihydroxyphenyl acetic acid (DOPAC), the major metabolite of DA, were also increased in these brain areas. Pharmacological studies with IHp extract have shown two major behavioural actions, namely, anxiolytic and antidepressant effects. The present findings tend to rationalise these observations, reduced 5-HT activity being consonant with anxiolytic and increased NA and DA activity being consonant with antidepressant action.  相似文献   

3.
By means of the histochemical method intensity of monoamines fluorescence has been studied in 3-, 5-, 7-, 10-, 20-, 30- and 60-day-old intact and neonatally androgenized female rats. The neonatal androgenization increases fluorescent intensity of monoamines in the neuropil of the adjoining nucleus of the septum, of the nucleus in the terminal stripe bed and the caudate nucleus. This is especially evident on the 3d, 7th and 30th days. On the 5th day of the postnatal life the difference in fluorescent intensity of monoamines in the brain of control and test animals is statistically insignificant. Possible mechanisms responsible for the fluorescent intensity of monoamines and the role of the latter in transmitting the sex hormones effect to the neurons of the forebrain structures investigated are discussed.  相似文献   

4.
The content of some biogenic monoamines and their metabolites in rat brain and heart in different periods of oxygen epilepsia was studied using high performance liquid chromatography with electrochemical detection. It was shown that already at the 5th minute of exposure to oxygen adrenaline, DOPA and some noradrenaline metabolites disappeared in the brain and noradrenaline level reduced. At this period in rat heart the reduction of catecholamine content was the most distinct and serotonin level was unchanged. At the beginning of convulsive period the modifications of biogenic amines content were nonparallel in brain regions: in the heart the reduction of catecholamine level went on, especially in right ventricle. In the terminal phase of oxygen epilepsia brain biogenic amines increased, however, not up to normal meaning, heart catecholamines at this period were at the same level as at the beginning of the convulsive period.  相似文献   

5.
The content of monoamines, their precursors and metabolites was measured in brain specimens weighing several milligram by ion-pair high performance liquid chromatography on reversed phase microcolumns together with electrochemical detection. The properties of different sorbents are compared and the choice of a mobile phase is discussed. The technique of column packing and preparation of brain samples are described.  相似文献   

6.
Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.  相似文献   

7.
Due to it's estrogen-secreting qualities, a Japanese herbal medicine, Toki-Shakuyaku-San may have a potential role for Alzheimer's disease in women. The effect of treatment with Toki-Shakuyaku-San testing on concentrations of monoamines, their metabolites and amino acids in the cortex, hippocampus and striatum of senescence accelerated mice (SAMP8) was examined and sex differences of SAMP8 and ddY mice was studied. In the female SAMP8, concentrations of -aminobutyric acid, alanine, and glycine were elevated in three regions after treatment. The concentration of glutamate was decreased in the cortex, hippocampus, and striatum of female and male SAMP8 and not in female and male ddY mice. These results suggest that different effects of Toki-Shakuyaku-San treatment on concentrations of monoamines, their metabolites and amino acids in the brain tissue may be due to its stimulation of secreted estrogen on neurons.  相似文献   

8.
Roz N  Rehavi M 《Life sciences》2004,75(23):2841-2850
Hyperforin, a phloroglucinol derivative found in Hypericum perforatum (St. John's wort) extracts has antidepressant properties in depressed patients. Hyperforin has a unique pharmacological profile and it inhibits uptake of biogenic monoamines as well as amino acid transmitters. We have recently showed that the monoamines uptake inhibition exerted by hyperforin is related to its ability to dissipate the pH gradient across the synaptic vesicle membrane thereby interfering with vesicular monoamines storage. In the present study we demonstrate that hyperforin induces dose-dependent efflux of preloaded [3H]5HT and [3H]DA from rat brain slices. Moreover, we show that hyperforin attenuates depolarization- dependent release of monoamines, while increasing monoamine release by amphetamine or fenfluramine. It is also demonstrated that preincubation of brain slices with reserpine is associated with dose- dependent blunting of efflux due to hyperforin. Our data indicate that hyperforin-induced efflux of [3H]5HT and [3H]DA reflect elevated cytoplasmic concentrations of the two monoamines secondary to the depletion of the synaptic vesicle content and the compartmental redistribution of nerve ending monoamines.  相似文献   

9.
Perturbations in brain monoamine systems during stress   总被引:1,自引:0,他引:1  
Monoamines modulate the activity of many neurons and there is evidence that a balanced synthesis of central nervous monoamines is a prerequisite for normal brain functioning. Stress accelerates both release and turnover of brain monoamines and the resulting fluctuations in concentrations affect various parameters within neurotransmitter systems. Acute stress leads to only transient alterations in monoamine systems so that homeostasis can be restored, in contrast, chronic stress accompanied by repetitive and/or prolonged stimulation of monoaminergic neurons can induce a long-lasting imbalance in central nervous neurotransmitter systems. Accordingly, stress-induced changes in brain monoamine systems are suspected to contribute to psychiatric diseases such as depression. The present paper gives a short overview of stress effects on brain monoamines and their receptors.The work presented in this review was in part supported by the German Science Foundation (SFB406, C4 to G.F.). M.J.M. was supported by the DFG grant Fu 174/17–1 and EC Training Through Research (ERBFMBICT 961829).  相似文献   

10.
The changes in monoamine levels of different brain regions following Japanese encephalitis virus (JEV) intraperitoneal inoculation were examined in experimentally JEV-infected mice. In addition, virus distribution was studied using infectivity assay and immuno-histochemistry of viral antigen. 1) The level of monoamines in brain tissues was not affected by 48 hours after viral inoculation, but marked effects were elicited at 96 hours after the inoculation. The cerebral concentration of 5-hydroxyindole-3-acetic acid (5 HIAA) was increased, while that of dopamine (DA) showed a decrease. Especially these alteration were observed in the cerebral cortex, but not in the cerebellum. 2) The viral growth in the brain was observed at 48 hours after the inoculation. The growth in the cerebellum, however, was found to be lower than those in other cerebral regions. 3) The viral antigen was detected in the cerebral cortex, hippocampus, mesencephalon and diencephalon in addition to the substantia nigra and striatum. From these results, it is presumed that clinical manifestation of JEV infection may involve the changes in the metabolism of neurotransmitter, especially those of DA and serotonin in the brain.  相似文献   

11.
The social status of hatchery-reared juveniles of Atlantic salmon Salmo salar at the age of 11–19 months in conditions of lack of shelters was investigated experimentally. It was demonstrated that biochemical differentiation in such juveniles begins at the age of 13 months—one month before the first differences in the social status of fish and four months prior to the beginning of smoltification. The dominants occupy bottom areas with shelters and extrude the subordinates to the water column. The subordinates undergo smoltification or die from aggression of the dominants. Concentrations of dopamine, noradrenalin, and of their metabolites in the brain of fish in the beginning of smoltification were higher in the dominants and, by the end of smoltification, were higher in smolts. The social behavior of fish is considered to be one of the ethological mechanisms of differentiation of salmon juveniles into smolts and parr.  相似文献   

12.
Cooperation and social support are the major advantages of living in social groups. However, there are also disadvantages arising from social conflict and competition. Social conflicts may increase allostatic load, which is reflected in increased concentrations of glucocorticoids. We applied the emerging concept of allostasis to investigate the relation between social status and glucocorticoid concentrations. Animals in a society experience different levels of allostatic load and these differences may predict relative glucocorticoid concentrations of dominant and subordinate individuals. We reviewed the available data from free-ranging animals and generated, for each sex separately, phylogenetic independent contrasts of allostatic load and relative glucocorticoid concentrations. Our results suggest that the relative allostatic load of social status predicts whether dominants or subordinates express higher or lower concentrations of glucocorticoids. There was a significant correlation between allostatic load of dominance and relative glucocorticoid concentrations in both females and males. When allostatic load was higher in dominants than in subordinates, dominants expressed higher levels of glucocorticoids; when allostatic load was similar in dominants and subordinates, there were only minor differences in glucocorticoid concentrations; and when allostatic load was lower in dominants than in subordinates, subordinates expressed higher levels of glucocorticoids than dominants. To our knowledge, this is the first model that consistently explains rank differences in glucocorticoid concentrations of different species and sexes. The heuristic concept of allostasis thus provides a testable framework for future studies of how social status is reflected in glucocorticoid concentrations.  相似文献   

13.
Intrathecal methotrexate in children with leukemia is known to cause seizures, dementia, leukoencephalopathy, and cognitive dysfunction after long-term treatment. To investigate the cognitive dysfunction, male Wistar rats were given multiple intracerebroventricular injections of methotrexate. Its effect on behaviour was tested in the two-compartment conditioned avoidance task and dark-bright arena test. Levels of brain amines in the hippocampal region of the brain were estimated by HPLC. The qualitative and quantitative histopathological changes in the different regions of the hippocampus were studied by cresyl violet staining. Multiple injections (1 or 2 mg/kg) produced convulsions and learning and memory impairment but did not induce anxiolytic activity. They also reduced concentrations of all three brain amines (norepinephrine, dopamine, and serotonin) and the serotonin metabolite 5-hydroxyindoleacetic acid. The CA4 region of the hippocampus was severely affected by intraventricular methotrexate. Disruption of brain monoamines has been proposed as a cause of brain dysfunction from this chemotherapy, and that disruption may in turn involve cytotoxic effects of methotrexate on brain tissue. The outcomes of this study may have therapeutic implications in the management of cancer conditions, particularly in childhood lymphoblastic leukemia.  相似文献   

14.
Significant differences in physical and behavioural/emotional/cognitive predictors and attributes, as well as of neurochemical inducers of behaviour, between dominant and subordinate animals are discussed. It is still unknown whether these factors are the causes of differences between dominants and subordinates, or vice versa whether the differences between dominants and subordinates are the origin of differences in these factors. The possibility is discussed that no differences exist among juveniles in the concentrations of neurochemical agents (known in the literature as determinants of dominance) between the brains of future dominants and future subordinates. We describe a study design that makes the assessment of the ‘original’ neurochemical profile of the brain possible.  相似文献   

15.
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.  相似文献   

16.
The adequate parameters for simultaneous determination of more than 10 monoamines, their precursors and metabolites (noradrenaline, 3-methoxy-4-hydroxyphenylglycol, 3,4-dihydrooxyphenylglycol++, vanylylmandelic acid, normetanephrine, adrenaline, metanephrine, dopamine, 3-methoxytytramine, 3,4-dihydroxphenylacetic acid, 3,4-dihydroxyphenylalanine, 5-hydroxytryptophane, 5-hydroxyindolacetic acid) by liquid chromatography with electro-chemical detection were suggested for the rat brain and heart. The influence of reserpine, iproniazid, and imipramine on the content of the changes of monoamines and their metabolite levels in the rat brain and heart were also investigated.  相似文献   

17.
Abstract: Modifications in the content of monoamines after different lesions of the cerebellar cortex were investigated in eight prosencephalic structures of cat's brain. Apart from other minor changes, lesions of the posterior vermis induced significant changes in the thalamus (decrease of DA and increase of 5-HT). Lesions of the cortex of a cerebellar hemisphere, on the other hand, produced an increase of 5-HT in the caudate nucleus and an increase of DA in the hippocampus in addition to a generalized increase of 5-HT in all the prosencephalic structures studied. These findings are discussed in relation to the anatomical connections of the lesioned areas and their expected role in the sleep-wakefulness cycle.  相似文献   

18.
It is now recognized that trace amine associated-receptor 1 (TAAR1) plays a functional role in the regulation of brain monoamines and the mediation of action of amphetamine-like psychostimulants. Accordingly, research on TAAR1 opens the door to a new avenue of approach for medications development to treat drug addiction as well as the spectrum of neuropsychiatric disorders hallmarked by aberrant regulation of brain monoamines. This overview focuses on recent studies which reveal a role for TAAR1 in the functional regulation of monoamine transporters and the neuronal regulatory mechanisms that modulate dopaminergic activity.  相似文献   

19.
The effect of quipazine on brain monoamines and the significance of this interaction in its anorectic activity was studied in rats. At doses ranging from 2.5 to 10 mg/kg quipazine markedly reduced brain 5-hydroxyindolacetic acid concentrations without significant effects on steady-state levels of serotonin, noradrenaline and dopamine. Striatal levels of homovanillic acid were significantly reduced by 10 mg/kg of quipazine but not modified by a dose of 5 mg/kg. Quipazine counteracted the decrease of brain serotonin induced by fenfluramine but did not significantly modify the effect of 6-hydroxydopamine on brain nonadrenaline and dopamine. The decrease of food intake induced by 5 mg/kg of quipazine was completely prevented by pretreatment with methergoline but was not affected by an intraventricular injection of 6-hydroxydopamine or pretreatment with penfluridol, propranolol or phentolamine. The results indicate that at doses between 2.5 and 5 mg/kg quipazine specifically acts on brain serotonin and this interaction may be important for its anorectic activity.  相似文献   

20.
Investigation of the effects of injecting monoamines (noradrenaline, dopamine and serotonin) into the third ventricle of the brain on the LH-RH content in the synaptosomal fraction of the mediobasal hypothalamus in intact and castrated male rats has demonstrated that all the three monoamines are involved in the regulation of synthesis and secretion of LH-RH and that their effects on LH-RH-producing neurons are steroid-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号